Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283576768> ?p ?o ?g. }
- W4283576768 endingPage "105088" @default.
- W4283576768 startingPage "105088" @default.
- W4283576768 abstract "Feature selection, which aims to screen out redundant and irrelevant features from datasets, is integral to machine learning and data mining. Grey Wolf Optimization (GWO) is a recent meta-heuristic algorithm based on swarm intelligence and has wide applicability to various optimization problems due to its fast convergence and few parameters. However, since the wolf pack is always dominated by the three leading wolves (i.e., α, β and δ), the GWO algorithm suffers from weak exploration throughout the whole optimization process and easily stagnates into local optima. In this paper, an Adaptively Balanced Grey Wolf Optimization (ABGWO) algorithm is proposed to seek out the optimal feature subset for high-dimensional classification. Specifically, to improve the exploration ability of GWO, a random wolf is introduced to cooperate with α, β and δ. A novel level-based strategy is further adopted to select the random wolf. Besides, to dynamically modulate the exploration and exploitation ability in different optimization stages, an adaptive coefficient is introduced to regulate the leadership of α, β, δ and the randomly-selected wolf. Finally, the improvement of exploration and exploitation is validated on 12 high-dimensional datasets provided by Arizona State University and University of California Irvine, and the superiority of ABGWO is further verified by comparing it with seven state-of-the-art feature selection approaches on the aspect of classification accuracy, size of feature subset and computational time." @default.
- W4283576768 created "2022-06-28" @default.
- W4283576768 creator A5005835805 @default.
- W4283576768 creator A5011503007 @default.
- W4283576768 creator A5064606040 @default.
- W4283576768 creator A5091459410 @default.
- W4283576768 date "2022-09-01" @default.
- W4283576768 modified "2023-10-06" @default.
- W4283576768 title "An adaptively balanced grey wolf optimization algorithm for feature selection on high-dimensional classification" @default.
- W4283576768 cites W1968075052 @default.
- W4283576768 cites W1976355338 @default.
- W4283576768 cites W1977838479 @default.
- W4283576768 cites W2000621750 @default.
- W4283576768 cites W2013647860 @default.
- W4283576768 cites W2017337590 @default.
- W4283576768 cites W2061438946 @default.
- W4283576768 cites W2065186919 @default.
- W4283576768 cites W2069928051 @default.
- W4283576768 cites W2096166399 @default.
- W4283576768 cites W2117533322 @default.
- W4283576768 cites W2127864991 @default.
- W4283576768 cites W2143560894 @default.
- W4283576768 cites W2290883490 @default.
- W4283576768 cites W2404310963 @default.
- W4283576768 cites W2408790422 @default.
- W4283576768 cites W2414577262 @default.
- W4283576768 cites W2416614998 @default.
- W4283576768 cites W2510664958 @default.
- W4283576768 cites W2520383694 @default.
- W4283576768 cites W2528103328 @default.
- W4283576768 cites W2557479526 @default.
- W4283576768 cites W2603378211 @default.
- W4283576768 cites W2605902561 @default.
- W4283576768 cites W2606704276 @default.
- W4283576768 cites W2622310785 @default.
- W4283576768 cites W2753899746 @default.
- W4283576768 cites W2778726590 @default.
- W4283576768 cites W2782513934 @default.
- W4283576768 cites W2790925524 @default.
- W4283576768 cites W2792304633 @default.
- W4283576768 cites W2792858698 @default.
- W4283576768 cites W2796325360 @default.
- W4283576768 cites W2810786926 @default.
- W4283576768 cites W2882037495 @default.
- W4283576768 cites W2899564976 @default.
- W4283576768 cites W2914801031 @default.
- W4283576768 cites W2924600982 @default.
- W4283576768 cites W2944431795 @default.
- W4283576768 cites W2954693883 @default.
- W4283576768 cites W2954936280 @default.
- W4283576768 cites W2965837582 @default.
- W4283576768 cites W2995473113 @default.
- W4283576768 cites W3001082681 @default.
- W4283576768 cites W3001998614 @default.
- W4283576768 cites W3003498136 @default.
- W4283576768 cites W3009979760 @default.
- W4283576768 cites W3010701680 @default.
- W4283576768 cites W3022309749 @default.
- W4283576768 cites W3035533770 @default.
- W4283576768 cites W3036075185 @default.
- W4283576768 cites W3036086884 @default.
- W4283576768 cites W3038617416 @default.
- W4283576768 cites W3054568159 @default.
- W4283576768 cites W3087652231 @default.
- W4283576768 cites W3096523314 @default.
- W4283576768 cites W3109194102 @default.
- W4283576768 cites W3117323734 @default.
- W4283576768 cites W3118637680 @default.
- W4283576768 cites W3132451580 @default.
- W4283576768 cites W3160224680 @default.
- W4283576768 cites W3202492825 @default.
- W4283576768 cites W4210774338 @default.
- W4283576768 cites W4292083457 @default.
- W4283576768 doi "https://doi.org/10.1016/j.engappai.2022.105088" @default.
- W4283576768 hasPublicationYear "2022" @default.
- W4283576768 type Work @default.
- W4283576768 citedByCount "20" @default.
- W4283576768 countsByYear W42835767682022 @default.
- W4283576768 countsByYear W42835767682023 @default.
- W4283576768 crossrefType "journal-article" @default.
- W4283576768 hasAuthorship W4283576768A5005835805 @default.
- W4283576768 hasAuthorship W4283576768A5011503007 @default.
- W4283576768 hasAuthorship W4283576768A5064606040 @default.
- W4283576768 hasAuthorship W4283576768A5091459410 @default.
- W4283576768 hasConcept C111919701 @default.
- W4283576768 hasConcept C11413529 @default.
- W4283576768 hasConcept C119487961 @default.
- W4283576768 hasConcept C119857082 @default.
- W4283576768 hasConcept C126255220 @default.
- W4283576768 hasConcept C137836250 @default.
- W4283576768 hasConcept C138885662 @default.
- W4283576768 hasConcept C141934464 @default.
- W4283576768 hasConcept C148483581 @default.
- W4283576768 hasConcept C153180895 @default.
- W4283576768 hasConcept C154945302 @default.
- W4283576768 hasConcept C162324750 @default.
- W4283576768 hasConcept C173801870 @default.
- W4283576768 hasConcept C2776401178 @default.