Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283578244> ?p ?o ?g. }
- W4283578244 endingPage "e37913" @default.
- W4283578244 startingPage "e37913" @default.
- W4283578244 abstract "Background Falls may cause elderly people to be bedridden, requiring professional intervention; thus, fall prevention is crucial. The use of electronic health records (EHRs) is expected to provide highly accurate risk assessment and length-of-stay data related to falls, which may be used to estimate the costs and benefits of prevention. However, no studies to date have investigated the extent to which hospital stays could be shortened through fall avoidance resulting from the use of prediction tools. Objective We first estimated the extended length of hospital stay caused by falls among elderly inpatients. Next, we developed a model that predicts falls using clinical text as input and evaluated its accuracy. Finally, we estimated the potentially shortened hospital stay that would be made possible by appropriate interventions based on the prediction model. Methods Patients aged 65 years or older were selected as subjects, and the EHRs of 1728 falls and 70,586 nonfalls were subjected to analysis. The extended-stay lengths were estimated using propensity score matching of 49 associated variables. Bidirectional encoder representations from transformers and bidirectional long short-term memory methods were used to predict falls from clinical text. The estimated length of stay and the outputs of the prediction model were used to determine stay reductions. Results The extended length of hospital stay due to falls was estimated to be 17.8 days (95% CI 16.6-19.0), which dropped to 8.6 days when there were unobserved covariates at an odds ratio of 2.0. The accuracy of the prediction model was as follows: area under the receiver operating characteristic curve, 0.851; F-value, 0.165; recall, 0.737; precision, 0.093; and specificity, 0.839. When assuming interventions with 25% or 100% effectiveness against cases where the model predicted a fall, the stay reduction was estimated at 0.022 and 0.099 days/day, respectively. Conclusions The accuracy of the prediction model using clinical text is considered to be higher than the prediction accuracy of conventional assessments. However, our model’s precision remained low at 9.3%. This may be due, in part, to the inclusion of cases in which falls did not occur because of preventative interventions during hospitalization. Nonetheless, it is estimated that interventions for cases when falls were predicted will reduce medical costs by 886 Yen/day (~US $6.50/day) of intervention, even if the preventative effect is 25%. Limitations include the fact that these results cannot be extrapolated to short- or long-term hospitalization cases, and that this was a single-center study." @default.
- W4283578244 created "2022-06-28" @default.
- W4283578244 creator A5009839802 @default.
- W4283578244 creator A5021892377 @default.
- W4283578244 creator A5023820316 @default.
- W4283578244 creator A5027959389 @default.
- W4283578244 creator A5059026890 @default.
- W4283578244 creator A5074533898 @default.
- W4283578244 date "2022-07-27" @default.
- W4283578244 modified "2023-10-18" @default.
- W4283578244 title "Impact of a Clinical Text–Based Fall Prediction Model on Preventing Extended Hospital Stays for Elderly Inpatients: Model Development and Performance Evaluation" @default.
- W4283578244 cites W1963689139 @default.
- W4283578244 cites W1972049047 @default.
- W4283578244 cites W1991596156 @default.
- W4283578244 cites W2006711104 @default.
- W4283578244 cites W2019750641 @default.
- W4283578244 cites W2021141973 @default.
- W4283578244 cites W2036193982 @default.
- W4283578244 cites W2039443748 @default.
- W4283578244 cites W2043941815 @default.
- W4283578244 cites W2060687237 @default.
- W4283578244 cites W2102557508 @default.
- W4283578244 cites W2112316706 @default.
- W4283578244 cites W2115098571 @default.
- W4283578244 cites W2124142667 @default.
- W4283578244 cites W2158190397 @default.
- W4283578244 cites W2169487017 @default.
- W4283578244 cites W2171443468 @default.
- W4283578244 cites W2213982568 @default.
- W4283578244 cites W2287966485 @default.
- W4283578244 cites W2890417290 @default.
- W4283578244 cites W2963341956 @default.
- W4283578244 cites W2972483465 @default.
- W4283578244 cites W3000817905 @default.
- W4283578244 cites W3103720397 @default.
- W4283578244 cites W3116946603 @default.
- W4283578244 cites W3120093105 @default.
- W4283578244 cites W3162462834 @default.
- W4283578244 cites W3200849552 @default.
- W4283578244 cites W3213545440 @default.
- W4283578244 cites W4241953436 @default.
- W4283578244 cites W4376848501 @default.
- W4283578244 cites W91631510 @default.
- W4283578244 doi "https://doi.org/10.2196/37913" @default.
- W4283578244 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35896017" @default.
- W4283578244 hasPublicationYear "2022" @default.
- W4283578244 type Work @default.
- W4283578244 citedByCount "1" @default.
- W4283578244 countsByYear W42835782442023 @default.
- W4283578244 crossrefType "journal-article" @default.
- W4283578244 hasAuthorship W4283578244A5009839802 @default.
- W4283578244 hasAuthorship W4283578244A5021892377 @default.
- W4283578244 hasAuthorship W4283578244A5023820316 @default.
- W4283578244 hasAuthorship W4283578244A5027959389 @default.
- W4283578244 hasAuthorship W4283578244A5059026890 @default.
- W4283578244 hasAuthorship W4283578244A5074533898 @default.
- W4283578244 hasBestOaLocation W42835782441 @default.
- W4283578244 hasConcept C119043178 @default.
- W4283578244 hasConcept C119857082 @default.
- W4283578244 hasConcept C126322002 @default.
- W4283578244 hasConcept C141071460 @default.
- W4283578244 hasConcept C143095724 @default.
- W4283578244 hasConcept C151956035 @default.
- W4283578244 hasConcept C159110408 @default.
- W4283578244 hasConcept C17923572 @default.
- W4283578244 hasConcept C190385971 @default.
- W4283578244 hasConcept C194828623 @default.
- W4283578244 hasConcept C27415008 @default.
- W4283578244 hasConcept C2776516907 @default.
- W4283578244 hasConcept C3017944768 @default.
- W4283578244 hasConcept C41008148 @default.
- W4283578244 hasConcept C45804977 @default.
- W4283578244 hasConcept C545542383 @default.
- W4283578244 hasConcept C71924100 @default.
- W4283578244 hasConceptScore W4283578244C119043178 @default.
- W4283578244 hasConceptScore W4283578244C119857082 @default.
- W4283578244 hasConceptScore W4283578244C126322002 @default.
- W4283578244 hasConceptScore W4283578244C141071460 @default.
- W4283578244 hasConceptScore W4283578244C143095724 @default.
- W4283578244 hasConceptScore W4283578244C151956035 @default.
- W4283578244 hasConceptScore W4283578244C159110408 @default.
- W4283578244 hasConceptScore W4283578244C17923572 @default.
- W4283578244 hasConceptScore W4283578244C190385971 @default.
- W4283578244 hasConceptScore W4283578244C194828623 @default.
- W4283578244 hasConceptScore W4283578244C27415008 @default.
- W4283578244 hasConceptScore W4283578244C2776516907 @default.
- W4283578244 hasConceptScore W4283578244C3017944768 @default.
- W4283578244 hasConceptScore W4283578244C41008148 @default.
- W4283578244 hasConceptScore W4283578244C45804977 @default.
- W4283578244 hasConceptScore W4283578244C545542383 @default.
- W4283578244 hasConceptScore W4283578244C71924100 @default.
- W4283578244 hasIssue "7" @default.
- W4283578244 hasLocation W42835782441 @default.
- W4283578244 hasLocation W42835782442 @default.
- W4283578244 hasLocation W42835782443 @default.
- W4283578244 hasOpenAccess W4283578244 @default.
- W4283578244 hasPrimaryLocation W42835782441 @default.
- W4283578244 hasRelatedWork W2024788963 @default.