Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283587355> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4283587355 abstract "Abstract Pseudo-random number generators (PRNGs) are software algorithms generating a sequence of numbers approximating the properties of random numbers. They are critical components in many information systems that require unpredictable and nonarbitrary behaviors, such as parameter configuration in machine learning, gaming, cryptography, and simulation. A PRNG is commonly validated through a statistical test suite, such as NIST SP 800-22rev1a (NIST test suite), to evaluate its robustness and the randomness of the numbers. In this paper, we propose a Wasserstein distance-based generative adversarial network (WGAN) approach to generating PRNGs that fully satisfy the NIST test suite. In this approach, the existing Mersenne Twister (MT) PRNG is learned without implementing any mathematical programming code. We remove the dropout layers from the conventional WGAN network to learn random numbers distributed in the entire feature space because the nearly infinite amount of data can suppress the overfitting problems that occur without dropout layers. We conduct experimental studies to evaluate our learned pseudo-random number generator (LPRNG) by adopting cosine-function-based numbers with poor random number properties according to the NIST test suite as seed numbers. The experimental results show that our LPRNG successfully converted the sequence of seed numbers to random numbers that fully satisfy the NIST test suite. This study opens the way for the “democratization” of PRNGs through the end-to-end learning of conventional PRNGs, which means that PRNGs can be generated without deep mathematical know-how. Such tailor-made PRNGs will effectively enhance the unpredictability and nonarbitrariness of a wide range of information systems, even if the seed numbers can be revealed by reverse engineering. The experimental results also show that overfitting was observed after about 450,000 trials of learning, suggesting that there is an upper limit to the number of learning counts for a fixed-size neural network, even when learning with unlimited data." @default.
- W4283587355 created "2022-06-28" @default.
- W4283587355 creator A5004379494 @default.
- W4283587355 creator A5010147639 @default.
- W4283587355 creator A5054794415 @default.
- W4283587355 creator A5057947095 @default.
- W4283587355 date "2022-06-27" @default.
- W4283587355 modified "2023-09-23" @default.
- W4283587355 title "Learned Pseudo-Random Number Generator: WGAN-GP for Generating Statistically Robust Random Numbers" @default.
- W4283587355 doi "https://doi.org/10.21203/rs.3.rs-1695121/v1" @default.
- W4283587355 hasPublicationYear "2022" @default.
- W4283587355 type Work @default.
- W4283587355 citedByCount "0" @default.
- W4283587355 crossrefType "posted-content" @default.
- W4283587355 hasAuthorship W4283587355A5004379494 @default.
- W4283587355 hasAuthorship W4283587355A5010147639 @default.
- W4283587355 hasAuthorship W4283587355A5054794415 @default.
- W4283587355 hasAuthorship W4283587355A5057947095 @default.
- W4283587355 hasBestOaLocation W42835873551 @default.
- W4283587355 hasConcept C105795698 @default.
- W4283587355 hasConcept C111219384 @default.
- W4283587355 hasConcept C11413529 @default.
- W4283587355 hasConcept C119857082 @default.
- W4283587355 hasConcept C125112378 @default.
- W4283587355 hasConcept C128942645 @default.
- W4283587355 hasConcept C140642157 @default.
- W4283587355 hasConcept C151552104 @default.
- W4283587355 hasConcept C152877465 @default.
- W4283587355 hasConcept C154945302 @default.
- W4283587355 hasConcept C201866948 @default.
- W4283587355 hasConcept C28490314 @default.
- W4283587355 hasConcept C33923547 @default.
- W4283587355 hasConcept C41008148 @default.
- W4283587355 hasConcept C80444323 @default.
- W4283587355 hasConcept C87007009 @default.
- W4283587355 hasConceptScore W4283587355C105795698 @default.
- W4283587355 hasConceptScore W4283587355C111219384 @default.
- W4283587355 hasConceptScore W4283587355C11413529 @default.
- W4283587355 hasConceptScore W4283587355C119857082 @default.
- W4283587355 hasConceptScore W4283587355C125112378 @default.
- W4283587355 hasConceptScore W4283587355C128942645 @default.
- W4283587355 hasConceptScore W4283587355C140642157 @default.
- W4283587355 hasConceptScore W4283587355C151552104 @default.
- W4283587355 hasConceptScore W4283587355C152877465 @default.
- W4283587355 hasConceptScore W4283587355C154945302 @default.
- W4283587355 hasConceptScore W4283587355C201866948 @default.
- W4283587355 hasConceptScore W4283587355C28490314 @default.
- W4283587355 hasConceptScore W4283587355C33923547 @default.
- W4283587355 hasConceptScore W4283587355C41008148 @default.
- W4283587355 hasConceptScore W4283587355C80444323 @default.
- W4283587355 hasConceptScore W4283587355C87007009 @default.
- W4283587355 hasLocation W42835873551 @default.
- W4283587355 hasOpenAccess W4283587355 @default.
- W4283587355 hasPrimaryLocation W42835873551 @default.
- W4283587355 hasRelatedWork W1963769065 @default.
- W4283587355 hasRelatedWork W2001667261 @default.
- W4283587355 hasRelatedWork W2094988437 @default.
- W4283587355 hasRelatedWork W2124786256 @default.
- W4283587355 hasRelatedWork W2240268530 @default.
- W4283587355 hasRelatedWork W2571912741 @default.
- W4283587355 hasRelatedWork W2951175353 @default.
- W4283587355 hasRelatedWork W3115969636 @default.
- W4283587355 hasRelatedWork W3139775301 @default.
- W4283587355 hasRelatedWork W3147233802 @default.
- W4283587355 isParatext "false" @default.
- W4283587355 isRetracted "false" @default.
- W4283587355 workType "article" @default.