Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283589871> ?p ?o ?g. }
- W4283589871 endingPage "102776" @default.
- W4283589871 startingPage "102776" @default.
- W4283589871 abstract "Spatiotemporal air quality datasets are typically collected hourly in monitoring stations deployed non-uniformly across a metropolitan city. These datasets are not only big, which poses challenges on the storage and processing capacity of centralized computing systems but also imbalanced and spatially heterogeneous, which may result in biased air quality prediction. To address these challenges, we designed and developed a parallel air quality prediction system equipped with a spatiotemporal data partitioning method, a distributed machine learning algorithm, Hadoop’s distributed data storage platform and its resource scheduler/manager, and Spark’s efficient and in-memory execution environment, which is suitable for running iterative algorithms, e.g., machine learning. Our proposed spatiotemporal partitioning method accounted for imbalance and spatial heterogeneity features of big air quality data in predictive models, which comply with the load-balancing requirement of distributed computing systems. Distributed Random Forest algorithm in the H2O library of the Spark framework was selected as the distributed machine learning algorithm to develop the air quality predictive model. This algorithm is an ensemble forest with algorithm-level adjustments to perform as efficiently as possible for big imbalanced datasets. An application of the parallel quality prediction system for Tehran, Iran showed that the parallel prediction system had considerable speedup gain and improved both the overall accuracy and class precision of air quality prediction when working with imbalanced big spatiotemporal air quality datasets. A future research direction is to add data streaming and visualization functions to the system to provide rapid and reliable air quality prediction for supporting environmental health management." @default.
- W4283589871 created "2022-06-28" @default.
- W4283589871 creator A5006776266 @default.
- W4283589871 creator A5011461918 @default.
- W4283589871 creator A5016690603 @default.
- W4283589871 date "2022-08-01" @default.
- W4283589871 modified "2023-10-18" @default.
- W4283589871 title "Spatiotemporal data partitioning for distributed random forest algorithm: Air quality prediction using imbalanced big spatiotemporal data on spark distributed framework" @default.
- W4283589871 cites W2009329344 @default.
- W4283589871 cites W2009332171 @default.
- W4283589871 cites W2084458282 @default.
- W4283589871 cites W2114968414 @default.
- W4283589871 cites W2159128662 @default.
- W4283589871 cites W2159493555 @default.
- W4283589871 cites W2171647935 @default.
- W4283589871 cites W2268875920 @default.
- W4283589871 cites W2472223596 @default.
- W4283589871 cites W2530314904 @default.
- W4283589871 cites W2542459869 @default.
- W4283589871 cites W2556483642 @default.
- W4283589871 cites W2596566143 @default.
- W4283589871 cites W2620334251 @default.
- W4283589871 cites W2774174309 @default.
- W4283589871 cites W2778213743 @default.
- W4283589871 cites W2789849108 @default.
- W4283589871 cites W2794292095 @default.
- W4283589871 cites W2799476458 @default.
- W4283589871 cites W2899434936 @default.
- W4283589871 cites W2930389570 @default.
- W4283589871 cites W2965888064 @default.
- W4283589871 cites W2970715214 @default.
- W4283589871 cites W2998881927 @default.
- W4283589871 cites W3002789006 @default.
- W4283589871 cites W3018761215 @default.
- W4283589871 cites W3045708591 @default.
- W4283589871 cites W3086613322 @default.
- W4283589871 cites W3162100792 @default.
- W4283589871 cites W3165356482 @default.
- W4283589871 cites W416578099 @default.
- W4283589871 cites W4210727921 @default.
- W4283589871 cites W4212883601 @default.
- W4283589871 doi "https://doi.org/10.1016/j.eti.2022.102776" @default.
- W4283589871 hasPublicationYear "2022" @default.
- W4283589871 type Work @default.
- W4283589871 citedByCount "3" @default.
- W4283589871 countsByYear W42835898712023 @default.
- W4283589871 crossrefType "journal-article" @default.
- W4283589871 hasAuthorship W4283589871A5006776266 @default.
- W4283589871 hasAuthorship W4283589871A5011461918 @default.
- W4283589871 hasAuthorship W4283589871A5016690603 @default.
- W4283589871 hasBestOaLocation W42835898711 @default.
- W4283589871 hasConcept C11413529 @default.
- W4283589871 hasConcept C119857082 @default.
- W4283589871 hasConcept C120314980 @default.
- W4283589871 hasConcept C121332964 @default.
- W4283589871 hasConcept C124101348 @default.
- W4283589871 hasConcept C126314574 @default.
- W4283589871 hasConcept C153294291 @default.
- W4283589871 hasConcept C154945302 @default.
- W4283589871 hasConcept C169258074 @default.
- W4283589871 hasConcept C173608175 @default.
- W4283589871 hasConcept C199360897 @default.
- W4283589871 hasConcept C2781215313 @default.
- W4283589871 hasConcept C41008148 @default.
- W4283589871 hasConcept C45942800 @default.
- W4283589871 hasConcept C68339613 @default.
- W4283589871 hasConcept C75684735 @default.
- W4283589871 hasConceptScore W4283589871C11413529 @default.
- W4283589871 hasConceptScore W4283589871C119857082 @default.
- W4283589871 hasConceptScore W4283589871C120314980 @default.
- W4283589871 hasConceptScore W4283589871C121332964 @default.
- W4283589871 hasConceptScore W4283589871C124101348 @default.
- W4283589871 hasConceptScore W4283589871C126314574 @default.
- W4283589871 hasConceptScore W4283589871C153294291 @default.
- W4283589871 hasConceptScore W4283589871C154945302 @default.
- W4283589871 hasConceptScore W4283589871C169258074 @default.
- W4283589871 hasConceptScore W4283589871C173608175 @default.
- W4283589871 hasConceptScore W4283589871C199360897 @default.
- W4283589871 hasConceptScore W4283589871C2781215313 @default.
- W4283589871 hasConceptScore W4283589871C41008148 @default.
- W4283589871 hasConceptScore W4283589871C45942800 @default.
- W4283589871 hasConceptScore W4283589871C68339613 @default.
- W4283589871 hasConceptScore W4283589871C75684735 @default.
- W4283589871 hasLocation W42835898711 @default.
- W4283589871 hasLocation W42835898712 @default.
- W4283589871 hasOpenAccess W4283589871 @default.
- W4283589871 hasPrimaryLocation W42835898711 @default.
- W4283589871 hasRelatedWork W2586475558 @default.
- W4283589871 hasRelatedWork W2790778417 @default.
- W4283589871 hasRelatedWork W3008487931 @default.
- W4283589871 hasRelatedWork W3174135814 @default.
- W4283589871 hasRelatedWork W4254050990 @default.
- W4283589871 hasRelatedWork W4281560664 @default.
- W4283589871 hasRelatedWork W4285046548 @default.
- W4283589871 hasRelatedWork W4285741730 @default.
- W4283589871 hasRelatedWork W4318350883 @default.
- W4283589871 hasRelatedWork W4375930479 @default.
- W4283589871 hasVolume "27" @default.