Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283640276> ?p ?o ?g. }
- W4283640276 endingPage "1055" @default.
- W4283640276 startingPage "1055" @default.
- W4283640276 abstract "Identifying people with a high risk of developing diabetes among those with prediabetes may facilitate the implementation of a targeted lifestyle and pharmacological interventions. We aimed to establish machine learning models based on demographic and clinical characteristics to predict the risk of incident diabetes. We used data from the free medical examination service project for elderly people who were 65 years or older to develop logistic regression (LR), decision tree (DT), random forest (RF), and extreme gradient boosting (XGBoost) machine learning models for the follow-up results of 2019 and 2020 and performed internal validation. The receiver operating characteristic (ROC), sensitivity, specificity, accuracy, and F1 score were used to select the model with better performance. The average annual progression rate to diabetes in prediabetic elderly people was 14.21%. Each model was trained using eight features and one outcome variable from 9607 prediabetic individuals, and the performance of the models was assessed in 2402 prediabetes patients. The predictive ability of four models in the first year was better than in the second year. The XGBoost model performed relatively efficiently (ROC: 0.6742 for 2019 and 0.6707 for 2020). We established and compared four machine learning models to predict the risk of progression from prediabetes to diabetes. Although there was little difference in the performance of the four models, the XGBoost model had a relatively good ROC value, which might perform well in future exploration in this field." @default.
- W4283640276 created "2022-06-29" @default.
- W4283640276 creator A5015986011 @default.
- W4283640276 creator A5033986016 @default.
- W4283640276 creator A5058618970 @default.
- W4283640276 creator A5075634438 @default.
- W4283640276 creator A5079547259 @default.
- W4283640276 creator A5083317624 @default.
- W4283640276 date "2022-06-27" @default.
- W4283640276 modified "2023-10-18" @default.
- W4283640276 title "Predicting the 2-Year Risk of Progression from Prediabetes to Diabetes Using Machine Learning among Chinese Elderly Adults" @default.
- W4283640276 cites W1584935767 @default.
- W4283640276 cites W1678356000 @default.
- W4283640276 cites W1927710737 @default.
- W4283640276 cites W1981976602 @default.
- W4283640276 cites W1994264723 @default.
- W4283640276 cites W2097453405 @default.
- W4283640276 cites W2112651272 @default.
- W4283640276 cites W2158822657 @default.
- W4283640276 cites W2408274411 @default.
- W4283640276 cites W2525984666 @default.
- W4283640276 cites W2620406790 @default.
- W4283640276 cites W2738681903 @default.
- W4283640276 cites W2900329012 @default.
- W4283640276 cites W2911964244 @default.
- W4283640276 cites W2931220276 @default.
- W4283640276 cites W2948954053 @default.
- W4283640276 cites W2964147226 @default.
- W4283640276 cites W2970435834 @default.
- W4283640276 cites W2981121978 @default.
- W4283640276 cites W3000308030 @default.
- W4283640276 cites W3011491737 @default.
- W4283640276 cites W3088599924 @default.
- W4283640276 cites W3102476541 @default.
- W4283640276 cites W3114047222 @default.
- W4283640276 cites W3136662390 @default.
- W4283640276 cites W3137532457 @default.
- W4283640276 cites W3157891814 @default.
- W4283640276 cites W3165845449 @default.
- W4283640276 cites W3174030102 @default.
- W4283640276 cites W3176679244 @default.
- W4283640276 cites W3186953129 @default.
- W4283640276 cites W3202959312 @default.
- W4283640276 cites W3215470728 @default.
- W4283640276 cites W4200454061 @default.
- W4283640276 doi "https://doi.org/10.3390/jpm12071055" @default.
- W4283640276 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35887552" @default.
- W4283640276 hasPublicationYear "2022" @default.
- W4283640276 type Work @default.
- W4283640276 citedByCount "2" @default.
- W4283640276 countsByYear W42836402762023 @default.
- W4283640276 crossrefType "journal-article" @default.
- W4283640276 hasAuthorship W4283640276A5015986011 @default.
- W4283640276 hasAuthorship W4283640276A5033986016 @default.
- W4283640276 hasAuthorship W4283640276A5058618970 @default.
- W4283640276 hasAuthorship W4283640276A5075634438 @default.
- W4283640276 hasAuthorship W4283640276A5079547259 @default.
- W4283640276 hasAuthorship W4283640276A5083317624 @default.
- W4283640276 hasBestOaLocation W42836402761 @default.
- W4283640276 hasConcept C118552586 @default.
- W4283640276 hasConcept C119857082 @default.
- W4283640276 hasConcept C126322002 @default.
- W4283640276 hasConcept C134018914 @default.
- W4283640276 hasConcept C151956035 @default.
- W4283640276 hasConcept C154945302 @default.
- W4283640276 hasConcept C169258074 @default.
- W4283640276 hasConcept C27415008 @default.
- W4283640276 hasConcept C2777180221 @default.
- W4283640276 hasConcept C2779668308 @default.
- W4283640276 hasConcept C41008148 @default.
- W4283640276 hasConcept C555293320 @default.
- W4283640276 hasConcept C58471807 @default.
- W4283640276 hasConcept C70153297 @default.
- W4283640276 hasConcept C71924100 @default.
- W4283640276 hasConcept C74909509 @default.
- W4283640276 hasConcept C84525736 @default.
- W4283640276 hasConceptScore W4283640276C118552586 @default.
- W4283640276 hasConceptScore W4283640276C119857082 @default.
- W4283640276 hasConceptScore W4283640276C126322002 @default.
- W4283640276 hasConceptScore W4283640276C134018914 @default.
- W4283640276 hasConceptScore W4283640276C151956035 @default.
- W4283640276 hasConceptScore W4283640276C154945302 @default.
- W4283640276 hasConceptScore W4283640276C169258074 @default.
- W4283640276 hasConceptScore W4283640276C27415008 @default.
- W4283640276 hasConceptScore W4283640276C2777180221 @default.
- W4283640276 hasConceptScore W4283640276C2779668308 @default.
- W4283640276 hasConceptScore W4283640276C41008148 @default.
- W4283640276 hasConceptScore W4283640276C555293320 @default.
- W4283640276 hasConceptScore W4283640276C58471807 @default.
- W4283640276 hasConceptScore W4283640276C70153297 @default.
- W4283640276 hasConceptScore W4283640276C71924100 @default.
- W4283640276 hasConceptScore W4283640276C74909509 @default.
- W4283640276 hasConceptScore W4283640276C84525736 @default.
- W4283640276 hasFunder F4320317798 @default.
- W4283640276 hasIssue "7" @default.
- W4283640276 hasLocation W42836402761 @default.
- W4283640276 hasLocation W42836402762 @default.
- W4283640276 hasLocation W42836402763 @default.