Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283646934> ?p ?o ?g. }
- W4283646934 endingPage "102854" @default.
- W4283646934 startingPage "102854" @default.
- W4283646934 abstract "Cutaneous leishmaniasis is a complex infection that is caused by different species of Leishmania and affects more than 2 million people in 88 countries. Identifying the environmental factors affecting the occurrence of cutaneous leishmaniasis and preparing a risk map is one of the basic tools to control and manage this disease. The aim of this study was a spatial prediction of cutaneous leishmaniasis in Isfahan province, Iran using three machine learning algorithms (decision tree (DT), support vector regression (SVR), and linear regression (LR)). The spatial database was created using data collected on the number of diseases in Isfahan province from 2011 to 2018, as well as ten environmental parameters (temperature, humidity, rainfall, altitude, slope, wind speed, normalized difference vegetation index (NDVI), number of sunny days, number of frosty days, and distance to stream) that affect the incidence of leishmaniasis. Furthermore, the fuzzy method was employed in this study to reduce uncertainty and evaluate the effect of environmental factors on disease prevalence. Using the holdout method and 70:30 ratios, the data were used to model and prepare a leishmaniasis prediction map and evaluate the results, respectively. The accuracy of the maps satisfied with the DT, SVR, and LR algorithms was 0.951, 0.934, and 0.914, respectively, according to the receiver operating characteristic (ROC) curve and area under the curve (AUC). Furthermore, the eastern and southern parts of the province have the lowest risk of leishmaniasis. The result of this issue is the identification of high-risk areas of the disease and increase life and peace for people in the community." @default.
- W4283646934 created "2022-06-29" @default.
- W4283646934 creator A5010572961 @default.
- W4283646934 creator A5023828527 @default.
- W4283646934 creator A5052523726 @default.
- W4283646934 creator A5079413889 @default.
- W4283646934 creator A5090732534 @default.
- W4283646934 date "2022-08-01" @default.
- W4283646934 modified "2023-10-01" @default.
- W4283646934 title "Integration of machine learning algorithms and GIS-based approaches to cutaneous leishmaniasis prevalence risk mapping" @default.
- W4283646934 cites W1947815517 @default.
- W4283646934 cites W1971712249 @default.
- W4283646934 cites W2044945592 @default.
- W4283646934 cites W2070714765 @default.
- W4283646934 cites W2088730795 @default.
- W4283646934 cites W2098053295 @default.
- W4283646934 cites W2118898434 @default.
- W4283646934 cites W2147878530 @default.
- W4283646934 cites W2149298154 @default.
- W4283646934 cites W2167717185 @default.
- W4283646934 cites W2406496922 @default.
- W4283646934 cites W2554232922 @default.
- W4283646934 cites W2597648394 @default.
- W4283646934 cites W2619767629 @default.
- W4283646934 cites W2796461903 @default.
- W4283646934 cites W2797998983 @default.
- W4283646934 cites W2799704027 @default.
- W4283646934 cites W2804841028 @default.
- W4283646934 cites W2890599451 @default.
- W4283646934 cites W2905470463 @default.
- W4283646934 cites W2907716967 @default.
- W4283646934 cites W2953823883 @default.
- W4283646934 cites W2954376520 @default.
- W4283646934 cites W3007126013 @default.
- W4283646934 cites W3009974024 @default.
- W4283646934 cites W3015066510 @default.
- W4283646934 cites W3027880148 @default.
- W4283646934 cites W3030549415 @default.
- W4283646934 cites W3037178738 @default.
- W4283646934 cites W3082501133 @default.
- W4283646934 cites W3084401160 @default.
- W4283646934 cites W3089678941 @default.
- W4283646934 cites W3102866270 @default.
- W4283646934 cites W3112854069 @default.
- W4283646934 cites W3114564654 @default.
- W4283646934 cites W3125801055 @default.
- W4283646934 cites W3146999162 @default.
- W4283646934 cites W3160296776 @default.
- W4283646934 cites W3189536807 @default.
- W4283646934 cites W4255432895 @default.
- W4283646934 doi "https://doi.org/10.1016/j.jag.2022.102854" @default.
- W4283646934 hasPublicationYear "2022" @default.
- W4283646934 type Work @default.
- W4283646934 citedByCount "1" @default.
- W4283646934 countsByYear W42836469342023 @default.
- W4283646934 crossrefType "journal-article" @default.
- W4283646934 hasAuthorship W4283646934A5010572961 @default.
- W4283646934 hasAuthorship W4283646934A5023828527 @default.
- W4283646934 hasAuthorship W4283646934A5052523726 @default.
- W4283646934 hasAuthorship W4283646934A5079413889 @default.
- W4283646934 hasAuthorship W4283646934A5090732534 @default.
- W4283646934 hasBestOaLocation W42836469341 @default.
- W4283646934 hasConcept C105795698 @default.
- W4283646934 hasConcept C11413529 @default.
- W4283646934 hasConcept C119857082 @default.
- W4283646934 hasConcept C12267149 @default.
- W4283646934 hasConcept C132651083 @default.
- W4283646934 hasConcept C1549246 @default.
- W4283646934 hasConcept C18903297 @default.
- W4283646934 hasConcept C203014093 @default.
- W4283646934 hasConcept C205649164 @default.
- W4283646934 hasConcept C2524010 @default.
- W4283646934 hasConcept C2776555147 @default.
- W4283646934 hasConcept C2778689377 @default.
- W4283646934 hasConcept C2778702967 @default.
- W4283646934 hasConcept C33923547 @default.
- W4283646934 hasConcept C41008148 @default.
- W4283646934 hasConcept C58471807 @default.
- W4283646934 hasConcept C58640448 @default.
- W4283646934 hasConcept C6350597 @default.
- W4283646934 hasConcept C71924100 @default.
- W4283646934 hasConcept C84525736 @default.
- W4283646934 hasConcept C86803240 @default.
- W4283646934 hasConceptScore W4283646934C105795698 @default.
- W4283646934 hasConceptScore W4283646934C11413529 @default.
- W4283646934 hasConceptScore W4283646934C119857082 @default.
- W4283646934 hasConceptScore W4283646934C12267149 @default.
- W4283646934 hasConceptScore W4283646934C132651083 @default.
- W4283646934 hasConceptScore W4283646934C1549246 @default.
- W4283646934 hasConceptScore W4283646934C18903297 @default.
- W4283646934 hasConceptScore W4283646934C203014093 @default.
- W4283646934 hasConceptScore W4283646934C205649164 @default.
- W4283646934 hasConceptScore W4283646934C2524010 @default.
- W4283646934 hasConceptScore W4283646934C2776555147 @default.
- W4283646934 hasConceptScore W4283646934C2778689377 @default.
- W4283646934 hasConceptScore W4283646934C2778702967 @default.
- W4283646934 hasConceptScore W4283646934C33923547 @default.
- W4283646934 hasConceptScore W4283646934C41008148 @default.