Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283650782> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4283650782 abstract "<p>Verification of precipitation forecasts are rarely published in scientific literature. This study deals with a verification of the 24-hour-precipitation forecast of the global numerical weather prediction models GFS, ICON, ARPEGE and NEMS, as well as the reanalysis model ERA5.</p><p>For model comparison more than 10&#8217;000 precipitation measurements worldwide from the measurement network METAR were used in hourly resolution. Annual, monthly, and daily precipitation sums of the global prediction models were compared with quality-controlled measurements for the year 2020. Continuous error metrics (e.g., mean absolute errors (MAE), mean bias errors (MBE)) as well as categorical error metrics (e.g., probability of detection, false alarm rate, Heidke Skill Score) are calculated for each measurement location separately, as well as averaged by a 2 x 2 degrees grid to account for the unequal global distribution of the measurements.</p><p>In general, the model errors are large in equatorial regions, areas close to the coast and in mountainous areas, where the annual precipitation amount is typically large. The best model performance was analysed for the reanalysis model ERA5 with a mean absolute error of 234 mm and a small mean bias error of -6 mm. ICON showed the lowest MAE of the operational weather forecast models (MAE = 253 mm) followed by GFS (MAE = 270 mm), ARPEGE (MAE = 281 mm) and NEMS (MAE = 296 mm). NEMS and ICON tend to underestimate annual precipitation amounts, whereas GFS and ARPEGE tend to overestimate annual precipitation amounts. Daily precipitation events larger than 1 mm were detected most accurate with ICON (HSS = 0.46) and ERA5 (HSS = 0.45), followed by GFS, ARPEGE and NEMS.</p><p>For each country, the model with the highest accuracy was determined based on the MAE of annual precipitation sums and based on the accuracy of daily precipitation events. For more than 80 % of all countries worldwide ERA5 or ICON showed the best model performance.</p>" @default.
- W4283650782 created "2022-06-29" @default.
- W4283650782 creator A5009957605 @default.
- W4283650782 creator A5010842007 @default.
- W4283650782 creator A5087341675 @default.
- W4283650782 date "2022-06-28" @default.
- W4283650782 modified "2023-10-18" @default.
- W4283650782 title "Global verification of the 24-hour precipitation forecast of numerical weather prediction models" @default.
- W4283650782 doi "https://doi.org/10.5194/ems2022-383" @default.
- W4283650782 hasPublicationYear "2022" @default.
- W4283650782 type Work @default.
- W4283650782 citedByCount "0" @default.
- W4283650782 crossrefType "posted-content" @default.
- W4283650782 hasAuthorship W4283650782A5009957605 @default.
- W4283650782 hasAuthorship W4283650782A5010842007 @default.
- W4283650782 hasAuthorship W4283650782A5087341675 @default.
- W4283650782 hasConcept C105795698 @default.
- W4283650782 hasConcept C107054158 @default.
- W4283650782 hasConcept C121332964 @default.
- W4283650782 hasConcept C127313418 @default.
- W4283650782 hasConcept C140178040 @default.
- W4283650782 hasConcept C147947694 @default.
- W4283650782 hasConcept C153294291 @default.
- W4283650782 hasConcept C199360897 @default.
- W4283650782 hasConcept C2778447006 @default.
- W4283650782 hasConcept C33923547 @default.
- W4283650782 hasConcept C39432304 @default.
- W4283650782 hasConcept C41008148 @default.
- W4283650782 hasConcept C49204034 @default.
- W4283650782 hasConceptScore W4283650782C105795698 @default.
- W4283650782 hasConceptScore W4283650782C107054158 @default.
- W4283650782 hasConceptScore W4283650782C121332964 @default.
- W4283650782 hasConceptScore W4283650782C127313418 @default.
- W4283650782 hasConceptScore W4283650782C140178040 @default.
- W4283650782 hasConceptScore W4283650782C147947694 @default.
- W4283650782 hasConceptScore W4283650782C153294291 @default.
- W4283650782 hasConceptScore W4283650782C199360897 @default.
- W4283650782 hasConceptScore W4283650782C2778447006 @default.
- W4283650782 hasConceptScore W4283650782C33923547 @default.
- W4283650782 hasConceptScore W4283650782C39432304 @default.
- W4283650782 hasConceptScore W4283650782C41008148 @default.
- W4283650782 hasConceptScore W4283650782C49204034 @default.
- W4283650782 hasLocation W42836507821 @default.
- W4283650782 hasOpenAccess W4283650782 @default.
- W4283650782 hasPrimaryLocation W42836507821 @default.
- W4283650782 hasRelatedWork W2074075405 @default.
- W4283650782 hasRelatedWork W2364948917 @default.
- W4283650782 hasRelatedWork W2467445977 @default.
- W4283650782 hasRelatedWork W2742823986 @default.
- W4283650782 hasRelatedWork W2923167966 @default.
- W4283650782 hasRelatedWork W2967120870 @default.
- W4283650782 hasRelatedWork W3134280562 @default.
- W4283650782 hasRelatedWork W3196088787 @default.
- W4283650782 hasRelatedWork W4319597769 @default.
- W4283650782 hasRelatedWork W2157312879 @default.
- W4283650782 isParatext "false" @default.
- W4283650782 isRetracted "false" @default.
- W4283650782 workType "article" @default.