Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283657712> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4283657712 abstract "In the first part of this talk we present the unified first order hyperbolic formulation of Newtonian continuum mechanics proposed by Godunov, Peshkov and Romenski (GPR). The governing PDE system can be derived from a variational principle and belongs to the class of symmetric hyperbolic and thermodynamically compatible systems (SHTC), which have been studied for the first time by Godunov in 1961 and later in a series of papers by Godunov Romenski. An important feature of the model is that the propagation speeds of all physical processes, including dissipative processes, are finite. The GPR model is a geometric approach to continuum mechanics that is able to describe the behavior of nonlinear elasto-plastic solids at large deformations, as well as viscous Newtonian and non-Newtonian fluids within one and the same governing PDE system. This is achieved via appropriate relaxation source terms in the evolution equations for the distortion field and the thermal impulse. It can be shown that the GPR model reduces to the compressible Navier-Stokes equations in the stiff relaxation limit, i.e. when the relaxation times tend to zero. The unified system is also able to describe material failure, such as crack generation and fatigue. In the second part of the talk a family of high order ADER discontinuous Galerkin finite element schemes with a posteriori subcell finite volume limiter is introduced and applied to the GPR model. Computational results for nonlinear elasto-plastic solids with material failure are shown, as well as results in the fluid limit. In the absence of source terms, the homogeneous part of the GPR model is endowed with involutions, namely the distortion field A and the thermal impulse J need to remain curl-free. In the third part of the talk we therefore present a new structure-preserving scheme that is able to preserve the curl-free property of both fields exactly also on the discrete level. This is achieved via the definition of appropriate and compatible discrete gradient and curl operators on a judiciously chosen staggered grid. Furthermore, the pressure terms are discretized implicitly, in order to capture the low Mach number limit of the equations properly, while all other terms are discretized explicitly. In this manner, the resulting pressure system is symmetric and positive definite and can be solved with efficient iterative solvers like the conjugate gradient method. Last but not least, the new staggered semi-implicit scheme is asymptotic-preserving and thus also able to reproduce the stiff relaxation limit of the governing PDE system properly, recovering an appropriate discretization of the compressible Navier-Stokes equations." @default.
- W4283657712 created "2022-06-29" @default.
- W4283657712 creator A5051559583 @default.
- W4283657712 date "2022-06-27" @default.
- W4283657712 modified "2023-10-14" @default.
- W4283657712 title "Numerical Schemes for a Unified First Order Hyperbolic System of Continuum Mechanics" @default.
- W4283657712 cites W2262511075 @default.
- W4283657712 cites W3009376629 @default.
- W4283657712 cites W3023224548 @default.
- W4283657712 doi "https://doi.org/10.52843/cassyni.w7f1gv" @default.
- W4283657712 hasPublicationYear "2022" @default.
- W4283657712 type Work @default.
- W4283657712 citedByCount "0" @default.
- W4283657712 crossrefType "posted-content" @default.
- W4283657712 hasAuthorship W4283657712A5051559583 @default.
- W4283657712 hasConcept C121332964 @default.
- W4283657712 hasConcept C134306372 @default.
- W4283657712 hasConcept C135628077 @default.
- W4283657712 hasConcept C158622935 @default.
- W4283657712 hasConcept C33923547 @default.
- W4283657712 hasConcept C50478463 @default.
- W4283657712 hasConcept C57879066 @default.
- W4283657712 hasConcept C62520636 @default.
- W4283657712 hasConcept C74650414 @default.
- W4283657712 hasConcept C84035572 @default.
- W4283657712 hasConcept C84655787 @default.
- W4283657712 hasConcept C92244383 @default.
- W4283657712 hasConcept C97355855 @default.
- W4283657712 hasConcept C99692599 @default.
- W4283657712 hasConceptScore W4283657712C121332964 @default.
- W4283657712 hasConceptScore W4283657712C134306372 @default.
- W4283657712 hasConceptScore W4283657712C135628077 @default.
- W4283657712 hasConceptScore W4283657712C158622935 @default.
- W4283657712 hasConceptScore W4283657712C33923547 @default.
- W4283657712 hasConceptScore W4283657712C50478463 @default.
- W4283657712 hasConceptScore W4283657712C57879066 @default.
- W4283657712 hasConceptScore W4283657712C62520636 @default.
- W4283657712 hasConceptScore W4283657712C74650414 @default.
- W4283657712 hasConceptScore W4283657712C84035572 @default.
- W4283657712 hasConceptScore W4283657712C84655787 @default.
- W4283657712 hasConceptScore W4283657712C92244383 @default.
- W4283657712 hasConceptScore W4283657712C97355855 @default.
- W4283657712 hasConceptScore W4283657712C99692599 @default.
- W4283657712 hasFunder F4320322275 @default.
- W4283657712 hasFunder F4320335254 @default.
- W4283657712 hasFunder F4320337033 @default.
- W4283657712 hasLocation W42836577121 @default.
- W4283657712 hasOpenAccess W4283657712 @default.
- W4283657712 hasPrimaryLocation W42836577121 @default.
- W4283657712 hasRelatedWork W1490527682 @default.
- W4283657712 hasRelatedWork W1675200892 @default.
- W4283657712 hasRelatedWork W1943916903 @default.
- W4283657712 hasRelatedWork W2012290839 @default.
- W4283657712 hasRelatedWork W2036915488 @default.
- W4283657712 hasRelatedWork W2082720778 @default.
- W4283657712 hasRelatedWork W2313068114 @default.
- W4283657712 hasRelatedWork W2569970881 @default.
- W4283657712 hasRelatedWork W3029646087 @default.
- W4283657712 hasRelatedWork W4247104719 @default.
- W4283657712 isParatext "false" @default.
- W4283657712 isRetracted "false" @default.
- W4283657712 workType "article" @default.