Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283657730> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4283657730 endingPage "e1020" @default.
- W4283657730 startingPage "e1020" @default.
- W4283657730 abstract "The classification of multi-dimensional patterns is one of the most popular and often most challenging problems of machine learning. That is why some new approaches are being tried, expected to improve existing ones. The article proposes a new technique based on the decision network called self-optimizing neural networks (SONN). The proposed approach works on discretized data. Using a special procedure, we assign a feature vector to each element of the real-valued dataset. Later the feature vectors are analyzed, and decision patterns are created using so-called discriminants. We focus on how these discriminants are used and influence the final classifier prediction. Moreover, we also discuss the influence of the neighborhood topology. In the article, we use three different datasets with different properties. All results obtained by derived methods are compared with those obtained with the well-known support vector machine (SVM) approach. The results prove that the proposed solutions give better results than SVM. We can see that the information obtained from a training set is better generalized, and the final accuracy of the classifier is higher." @default.
- W4283657730 created "2022-06-29" @default.
- W4283657730 creator A5028045247 @default.
- W4283657730 creator A5035379314 @default.
- W4283657730 creator A5059636240 @default.
- W4283657730 date "2022-06-28" @default.
- W4283657730 modified "2023-10-14" @default.
- W4283657730 title "Self-optimizing neural network in the classification of real valued data" @default.
- W4283657730 cites W2001619934 @default.
- W4283657730 cites W2064769840 @default.
- W4283657730 cites W2069225091 @default.
- W4283657730 cites W2087347434 @default.
- W4283657730 cites W2790918693 @default.
- W4283657730 cites W2804213466 @default.
- W4283657730 cites W2943511409 @default.
- W4283657730 cites W2950009354 @default.
- W4283657730 cites W2998458143 @default.
- W4283657730 cites W3022440651 @default.
- W4283657730 cites W3034567317 @default.
- W4283657730 cites W3038456216 @default.
- W4283657730 cites W3095174976 @default.
- W4283657730 cites W3096405134 @default.
- W4283657730 cites W3098819468 @default.
- W4283657730 cites W3147609845 @default.
- W4283657730 cites W3150265835 @default.
- W4283657730 cites W3163404072 @default.
- W4283657730 cites W3177283294 @default.
- W4283657730 cites W3197504603 @default.
- W4283657730 cites W3200414374 @default.
- W4283657730 cites W3208447207 @default.
- W4283657730 cites W3208906812 @default.
- W4283657730 cites W34944344 @default.
- W4283657730 cites W4200024865 @default.
- W4283657730 cites W4200351803 @default.
- W4283657730 cites W4200526737 @default.
- W4283657730 cites W4200565931 @default.
- W4283657730 cites W4205161280 @default.
- W4283657730 cites W4206932825 @default.
- W4283657730 cites W4224054210 @default.
- W4283657730 cites W4239510810 @default.
- W4283657730 doi "https://doi.org/10.7717/peerj-cs.1020" @default.
- W4283657730 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35875630" @default.
- W4283657730 hasPublicationYear "2022" @default.
- W4283657730 type Work @default.
- W4283657730 citedByCount "0" @default.
- W4283657730 crossrefType "journal-article" @default.
- W4283657730 hasAuthorship W4283657730A5028045247 @default.
- W4283657730 hasAuthorship W4283657730A5035379314 @default.
- W4283657730 hasAuthorship W4283657730A5059636240 @default.
- W4283657730 hasBestOaLocation W42836577301 @default.
- W4283657730 hasConcept C119857082 @default.
- W4283657730 hasConcept C12267149 @default.
- W4283657730 hasConcept C124101348 @default.
- W4283657730 hasConcept C125168437 @default.
- W4283657730 hasConcept C134306372 @default.
- W4283657730 hasConcept C139532973 @default.
- W4283657730 hasConcept C153180895 @default.
- W4283657730 hasConcept C154945302 @default.
- W4283657730 hasConcept C33923547 @default.
- W4283657730 hasConcept C41008148 @default.
- W4283657730 hasConcept C50644808 @default.
- W4283657730 hasConcept C73000952 @default.
- W4283657730 hasConcept C83665646 @default.
- W4283657730 hasConcept C95623464 @default.
- W4283657730 hasConceptScore W4283657730C119857082 @default.
- W4283657730 hasConceptScore W4283657730C12267149 @default.
- W4283657730 hasConceptScore W4283657730C124101348 @default.
- W4283657730 hasConceptScore W4283657730C125168437 @default.
- W4283657730 hasConceptScore W4283657730C134306372 @default.
- W4283657730 hasConceptScore W4283657730C139532973 @default.
- W4283657730 hasConceptScore W4283657730C153180895 @default.
- W4283657730 hasConceptScore W4283657730C154945302 @default.
- W4283657730 hasConceptScore W4283657730C33923547 @default.
- W4283657730 hasConceptScore W4283657730C41008148 @default.
- W4283657730 hasConceptScore W4283657730C50644808 @default.
- W4283657730 hasConceptScore W4283657730C73000952 @default.
- W4283657730 hasConceptScore W4283657730C83665646 @default.
- W4283657730 hasConceptScore W4283657730C95623464 @default.
- W4283657730 hasLocation W42836577301 @default.
- W4283657730 hasLocation W42836577302 @default.
- W4283657730 hasLocation W42836577303 @default.
- W4283657730 hasOpenAccess W4283657730 @default.
- W4283657730 hasPrimaryLocation W42836577301 @default.
- W4283657730 hasRelatedWork W1555269405 @default.
- W4283657730 hasRelatedWork W1964761968 @default.
- W4283657730 hasRelatedWork W1996541855 @default.
- W4283657730 hasRelatedWork W2009083069 @default.
- W4283657730 hasRelatedWork W2101819884 @default.
- W4283657730 hasRelatedWork W2129101332 @default.
- W4283657730 hasRelatedWork W2362981726 @default.
- W4283657730 hasRelatedWork W2371712871 @default.
- W4283657730 hasRelatedWork W2762336871 @default.
- W4283657730 hasRelatedWork W2187500075 @default.
- W4283657730 hasVolume "8" @default.
- W4283657730 isParatext "false" @default.
- W4283657730 isRetracted "false" @default.
- W4283657730 workType "article" @default.