Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283659216> ?p ?o ?g. }
Showing items 1 to 42 of
42
with 100 items per page.
- W4283659216 endingPage "76" @default.
- W4283659216 startingPage "68" @default.
- W4283659216 abstract "A powerful imaging approach for detecting the origin of a stroke and brain imaging is magnetic resonance imaging (MRI7). Ultrahigh frequency-based MRI, which employs a 7 Tesla magnet and is being developed by SIEMENS for enhanced human imaging, is another type of MRI. This research looks into these MRIs. This article presents a different approach known as interval monitoring, which tries to detect tumor malignancy changes faster. The conceptual background and computer implementation of the proposed method are presented, and its application is demonstrated using an empirical example from image-based photo science, the American Cancer Registry. Because patient survival is the initial stage in cancer treatment, many cancer registries employ this strategy on a regular basis, which is a good thing. This is an important aspect of its treatment. Traditional methods of calculating cumulative survival, on the other hand, indicate changes in prognosis only after a large amount of time has passed. The GMPLS algorithm locates cancer in a sequence of MRI images after filtering and skeletonization. When calculating the cancer equation, this research saves time and money. A statistical approach is used to produce the desired matrix, and the matrix inverse offers us a real-time mathematical equation that is unique for each patient. If the person has an injury or died, further survivor analysis is performed. This research aims to develop a one-of-a-kind mathematical model of a cancer patient, as well as a real-time graph of cancer health and a survivor function that predicts death." @default.
- W4283659216 created "2022-06-29" @default.
- W4283659216 creator A5091131586 @default.
- W4283659216 date "2022-06-22" @default.
- W4283659216 modified "2023-10-16" @default.
- W4283659216 title "Survival Analysis of Tumor using 7 Tesla Magnetic Resonance Imaging (MRI): A Statistical Approach" @default.
- W4283659216 doi "https://doi.org/10.9734/bpi/cpms/v4/1621b" @default.
- W4283659216 hasPublicationYear "2022" @default.
- W4283659216 type Work @default.
- W4283659216 citedByCount "0" @default.
- W4283659216 crossrefType "book-chapter" @default.
- W4283659216 hasAuthorship W4283659216A5091131586 @default.
- W4283659216 hasConcept C126838900 @default.
- W4283659216 hasConcept C143409427 @default.
- W4283659216 hasConcept C154945302 @default.
- W4283659216 hasConcept C19527891 @default.
- W4283659216 hasConcept C41008148 @default.
- W4283659216 hasConcept C71924100 @default.
- W4283659216 hasConceptScore W4283659216C126838900 @default.
- W4283659216 hasConceptScore W4283659216C143409427 @default.
- W4283659216 hasConceptScore W4283659216C154945302 @default.
- W4283659216 hasConceptScore W4283659216C19527891 @default.
- W4283659216 hasConceptScore W4283659216C41008148 @default.
- W4283659216 hasConceptScore W4283659216C71924100 @default.
- W4283659216 hasLocation W42836592161 @default.
- W4283659216 hasOpenAccess W4283659216 @default.
- W4283659216 hasPrimaryLocation W42836592161 @default.
- W4283659216 hasRelatedWork W1225827579 @default.
- W4283659216 hasRelatedWork W1995515455 @default.
- W4283659216 hasRelatedWork W2027238074 @default.
- W4283659216 hasRelatedWork W2080531066 @default.
- W4283659216 hasRelatedWork W2122076220 @default.
- W4283659216 hasRelatedWork W2748952813 @default.
- W4283659216 hasRelatedWork W2899084033 @default.
- W4283659216 hasRelatedWork W3031052312 @default.
- W4283659216 hasRelatedWork W3032375762 @default.
- W4283659216 hasRelatedWork W3108674512 @default.
- W4283659216 isParatext "false" @default.
- W4283659216 isRetracted "false" @default.
- W4283659216 workType "book-chapter" @default.