Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283661888> ?p ?o ?g. }
- W4283661888 abstract "We formulated and tested ensemble learning models to classify axial length (AXL) from choroidal thickness (CT) as indicated on fovea-centered, 2D single optical coherence tomography (OCT) images.Retrospective cross-sectional study.We analyzed 710 OCT images from 355 eyes of 188 patients. Each eye had 2 OCT images.The CT was estimated from 3 points of each image. We used five machine-learning base algorithms to construct the classifiers. This study trained and validated the models to classify the AXLs eyes based on binary (AXL < or > 26 mm) and multiclass (AXL < 22 mm, between 22 and 26 mm, and > 26 mm) classifications.No features were redundant or duplicated after an analysis using Pearson's correlation coefficient, LASSO-Pattern search algorithm, and variance inflation factors. Among the positions, CT at the nasal side had the highest correlation with AXL followed by the central area. In binary classification, our classifiers obtained high accuracy, as indicated by accuracy, recall, positive predictive value (PPV), negative predictive value (NPV), F1 score, and area under ROC curve (AUC) values of 94.37, 100, 90.91, 100, 86.67, and 95.61%, respectively. In multiclass classification, our classifiers were also highly accurate, as indicated by accuracy, weighted recall, weighted PPV, weighted NPV, weighted F1 score, and macro AUC of 88.73, 88.73, 91.21, 85.83, 87.42, and 93.42%, respectively.Our binary and multiclass classifiers classify AXL well from CT, as indicated on OCT images. We demonstrated the effectiveness of the proposed classifiers and provided an assistance tool for physicians." @default.
- W4283661888 created "2022-06-29" @default.
- W4283661888 creator A5003298635 @default.
- W4283661888 creator A5004676801 @default.
- W4283661888 creator A5015461077 @default.
- W4283661888 creator A5028640531 @default.
- W4283661888 creator A5061571071 @default.
- W4283661888 creator A5076216145 @default.
- W4283661888 date "2022-06-28" @default.
- W4283661888 modified "2023-09-26" @default.
- W4283661888 title "Predicting Axial Length From Choroidal Thickness on Optical Coherence Tomography Images With Machine Learning Based Algorithms" @default.
- W4283661888 cites W1583026443 @default.
- W4283661888 cites W188242369 @default.
- W4283661888 cites W1970705671 @default.
- W4283661888 cites W1996121046 @default.
- W4283661888 cites W2024046085 @default.
- W4283661888 cites W2036368820 @default.
- W4283661888 cites W2040387611 @default.
- W4283661888 cites W2047008553 @default.
- W4283661888 cites W2054118567 @default.
- W4283661888 cites W2061581949 @default.
- W4283661888 cites W2075894130 @default.
- W4283661888 cites W2163914036 @default.
- W4283661888 cites W2263495255 @default.
- W4283661888 cites W2400225668 @default.
- W4283661888 cites W2469369919 @default.
- W4283661888 cites W2533876941 @default.
- W4283661888 cites W2601324695 @default.
- W4283661888 cites W2614945756 @default.
- W4283661888 cites W2640386719 @default.
- W4283661888 cites W2778784225 @default.
- W4283661888 cites W2796809202 @default.
- W4283661888 cites W2897340379 @default.
- W4283661888 cites W2903623525 @default.
- W4283661888 cites W2939932761 @default.
- W4283661888 cites W2962572846 @default.
- W4283661888 cites W2966978954 @default.
- W4283661888 cites W2967720720 @default.
- W4283661888 cites W3022543352 @default.
- W4283661888 cites W3043672624 @default.
- W4283661888 cites W3081898614 @default.
- W4283661888 cites W3103817386 @default.
- W4283661888 cites W3115536696 @default.
- W4283661888 cites W3117972644 @default.
- W4283661888 cites W3138593099 @default.
- W4283661888 cites W3151617818 @default.
- W4283661888 cites W3156316671 @default.
- W4283661888 cites W3156742045 @default.
- W4283661888 cites W3159197599 @default.
- W4283661888 cites W3208747327 @default.
- W4283661888 cites W4255271122 @default.
- W4283661888 doi "https://doi.org/10.3389/fmed.2022.850284" @default.
- W4283661888 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35836947" @default.
- W4283661888 hasPublicationYear "2022" @default.
- W4283661888 type Work @default.
- W4283661888 citedByCount "5" @default.
- W4283661888 countsByYear W42836618882022 @default.
- W4283661888 countsByYear W42836618882023 @default.
- W4283661888 crossrefType "journal-article" @default.
- W4283661888 hasAuthorship W4283661888A5003298635 @default.
- W4283661888 hasAuthorship W4283661888A5004676801 @default.
- W4283661888 hasAuthorship W4283661888A5015461077 @default.
- W4283661888 hasAuthorship W4283661888A5028640531 @default.
- W4283661888 hasAuthorship W4283661888A5061571071 @default.
- W4283661888 hasAuthorship W4283661888A5076216145 @default.
- W4283661888 hasBestOaLocation W42836618881 @default.
- W4283661888 hasConcept C105795698 @default.
- W4283661888 hasConcept C112705442 @default.
- W4283661888 hasConcept C11413529 @default.
- W4283661888 hasConcept C117220453 @default.
- W4283661888 hasConcept C12267149 @default.
- W4283661888 hasConcept C123860398 @default.
- W4283661888 hasConcept C126322002 @default.
- W4283661888 hasConcept C126838900 @default.
- W4283661888 hasConcept C153180895 @default.
- W4283661888 hasConcept C154945302 @default.
- W4283661888 hasConcept C2524010 @default.
- W4283661888 hasConcept C2778818243 @default.
- W4283661888 hasConcept C3020225094 @default.
- W4283661888 hasConcept C33923547 @default.
- W4283661888 hasConcept C41008148 @default.
- W4283661888 hasConcept C55078378 @default.
- W4283661888 hasConcept C58471807 @default.
- W4283661888 hasConcept C66905080 @default.
- W4283661888 hasConcept C71924100 @default.
- W4283661888 hasConcept C81669768 @default.
- W4283661888 hasConceptScore W4283661888C105795698 @default.
- W4283661888 hasConceptScore W4283661888C112705442 @default.
- W4283661888 hasConceptScore W4283661888C11413529 @default.
- W4283661888 hasConceptScore W4283661888C117220453 @default.
- W4283661888 hasConceptScore W4283661888C12267149 @default.
- W4283661888 hasConceptScore W4283661888C123860398 @default.
- W4283661888 hasConceptScore W4283661888C126322002 @default.
- W4283661888 hasConceptScore W4283661888C126838900 @default.
- W4283661888 hasConceptScore W4283661888C153180895 @default.
- W4283661888 hasConceptScore W4283661888C154945302 @default.
- W4283661888 hasConceptScore W4283661888C2524010 @default.
- W4283661888 hasConceptScore W4283661888C2778818243 @default.
- W4283661888 hasConceptScore W4283661888C3020225094 @default.
- W4283661888 hasConceptScore W4283661888C33923547 @default.