Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283662018> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4283662018 endingPage "e1004" @default.
- W4283662018 startingPage "e1004" @default.
- W4283662018 abstract "Wide availability and large use of social media enable easy and rapid dissemination of news. The extensive spread of engineered news with intentionally false information has been observed over the past few years. Consequently, fake news detection has emerged as an important research area. Fake news detection in the Urdu language spoken by more than 230 million people has not been investigated very well. This study analyzes the use and efficacy of various machine learning classifiers along with a deep learning model to detect fake news in the Urdu language. Logistic regression, support vector machine, random forest (RF), naive Bayes, gradient boosting, and passive aggression have been utilized to this end. The influence of term frequency-inverse document frequency and BoW features has also been investigated. For experiments, a manually collected dataset that contains 900 news articles was used. Results suggest that RF performs better and achieves the highest accuracy of 0.92 for Urdu fake news with BoW features. In comparison with machine learning models, neural networks models long short term memory, and multi-layer perceptron are used. Machine learning models tend to show better performance than deep learning models." @default.
- W4283662018 created "2022-06-29" @default.
- W4283662018 creator A5023626139 @default.
- W4283662018 creator A5024998428 @default.
- W4283662018 creator A5029608406 @default.
- W4283662018 creator A5058941449 @default.
- W4283662018 creator A5074629800 @default.
- W4283662018 creator A5087270783 @default.
- W4283662018 date "2022-06-28" @default.
- W4283662018 modified "2023-10-18" @default.
- W4283662018 title "Comparative analysis of machine learning methods to detect fake news in an Urdu language <i>corpus</i>" @default.
- W4283662018 cites W122568889 @default.
- W4283662018 cites W2088794999 @default.
- W4283662018 cites W2911964244 @default.
- W4283662018 cites W2925285378 @default.
- W4283662018 cites W2945391245 @default.
- W4283662018 cites W2951773294 @default.
- W4283662018 cites W3004933906 @default.
- W4283662018 cites W3017305345 @default.
- W4283662018 cites W3018267015 @default.
- W4283662018 cites W3036840722 @default.
- W4283662018 cites W3148420755 @default.
- W4283662018 cites W4300952844 @default.
- W4283662018 cites W4320301321 @default.
- W4283662018 doi "https://doi.org/10.7717/peerj-cs.1004" @default.
- W4283662018 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35875651" @default.
- W4283662018 hasPublicationYear "2022" @default.
- W4283662018 type Work @default.
- W4283662018 citedByCount "3" @default.
- W4283662018 countsByYear W42836620182022 @default.
- W4283662018 countsByYear W42836620182023 @default.
- W4283662018 crossrefType "journal-article" @default.
- W4283662018 hasAuthorship W4283662018A5023626139 @default.
- W4283662018 hasAuthorship W4283662018A5024998428 @default.
- W4283662018 hasAuthorship W4283662018A5029608406 @default.
- W4283662018 hasAuthorship W4283662018A5058941449 @default.
- W4283662018 hasAuthorship W4283662018A5074629800 @default.
- W4283662018 hasAuthorship W4283662018A5087270783 @default.
- W4283662018 hasBestOaLocation W42836620181 @default.
- W4283662018 hasConcept C108583219 @default.
- W4283662018 hasConcept C119857082 @default.
- W4283662018 hasConcept C12267149 @default.
- W4283662018 hasConcept C138885662 @default.
- W4283662018 hasConcept C154945302 @default.
- W4283662018 hasConcept C169258074 @default.
- W4283662018 hasConcept C204321447 @default.
- W4283662018 hasConcept C2777350258 @default.
- W4283662018 hasConcept C41008148 @default.
- W4283662018 hasConcept C41895202 @default.
- W4283662018 hasConcept C50644808 @default.
- W4283662018 hasConcept C52001869 @default.
- W4283662018 hasConcept C60908668 @default.
- W4283662018 hasConcept C70153297 @default.
- W4283662018 hasConceptScore W4283662018C108583219 @default.
- W4283662018 hasConceptScore W4283662018C119857082 @default.
- W4283662018 hasConceptScore W4283662018C12267149 @default.
- W4283662018 hasConceptScore W4283662018C138885662 @default.
- W4283662018 hasConceptScore W4283662018C154945302 @default.
- W4283662018 hasConceptScore W4283662018C169258074 @default.
- W4283662018 hasConceptScore W4283662018C204321447 @default.
- W4283662018 hasConceptScore W4283662018C2777350258 @default.
- W4283662018 hasConceptScore W4283662018C41008148 @default.
- W4283662018 hasConceptScore W4283662018C41895202 @default.
- W4283662018 hasConceptScore W4283662018C50644808 @default.
- W4283662018 hasConceptScore W4283662018C52001869 @default.
- W4283662018 hasConceptScore W4283662018C60908668 @default.
- W4283662018 hasConceptScore W4283662018C70153297 @default.
- W4283662018 hasLocation W42836620181 @default.
- W4283662018 hasLocation W42836620182 @default.
- W4283662018 hasLocation W42836620183 @default.
- W4283662018 hasOpenAccess W4283662018 @default.
- W4283662018 hasPrimaryLocation W42836620181 @default.
- W4283662018 hasRelatedWork W2985924212 @default.
- W4283662018 hasRelatedWork W3168994312 @default.
- W4283662018 hasRelatedWork W3195168932 @default.
- W4283662018 hasRelatedWork W3211546796 @default.
- W4283662018 hasRelatedWork W4221021152 @default.
- W4283662018 hasRelatedWork W4223564025 @default.
- W4283662018 hasRelatedWork W4281616679 @default.
- W4283662018 hasRelatedWork W4375930479 @default.
- W4283662018 hasRelatedWork W4377964522 @default.
- W4283662018 hasRelatedWork W4384345534 @default.
- W4283662018 hasVolume "8" @default.
- W4283662018 isParatext "false" @default.
- W4283662018 isRetracted "false" @default.
- W4283662018 workType "article" @default.