Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283662635> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4283662635 endingPage "4850" @default.
- W4283662635 startingPage "4850" @default.
- W4283662635 abstract "This study evaluates the predictive modeling of the daily ambient temperature (maximum, Tmax; average, Tave; and minimum, Tmin) and its hourly estimation (T0h, …, T23h) using artificial neural networks (ANNs) for agricultural applications. The data, 2004–2010, were used for training and 2011 for validation, recorded at the SIAR agrometeorological station of Mansilla Mayor (León). ANN models for daily prediction have three neurons in the output layer (Tmax(t + 1), Tave(t + 1), Tmin(t + 1)). Two models were evaluated: (1) with three entries (Tmax(t), Tave(t), Tmin(t)), and (2) adding the day of the year (J(t)). The inclusion of J(t) improves the predictions, with an RMSE for Tmax = 2.56, Tave = 1.65 and Tmin = 2.09 (°C), achieving better results than the classical statistical methods (typical year Tave = 3.64 °C; weighted moving mean Tmax = 2.76, Tave = 1.81 and Tmin = 2.52 (°C); linear regression Tave = 1.85 °C; and Fourier Tmax = 3.75, Tave = 2.67 and Tmin = 3.34 (°C)) for one year. The ANN models for hourly estimation have 24 neurons in the output layer (T0h(t), …, T23h(t)) corresponding to the mean hourly temperature. In this case, the inclusion of the day of the year (J(t)) does not significantly improve the estimations, with an RMSE = 1.25 °C, but it improves the results of the ASHRAE method, which obtains an RMSE = 2.36 °C for one week. The results obtained, with lower prediction errors than those achieved with the classical methods, confirm the interest in using the ANN models for predicting temperatures in agricultural applications." @default.
- W4283662635 created "2022-06-29" @default.
- W4283662635 creator A5011280736 @default.
- W4283662635 creator A5015002161 @default.
- W4283662635 creator A5043691001 @default.
- W4283662635 creator A5054458683 @default.
- W4283662635 creator A5058678815 @default.
- W4283662635 creator A5065543825 @default.
- W4283662635 creator A5087363497 @default.
- W4283662635 date "2022-06-27" @default.
- W4283662635 modified "2023-10-18" @default.
- W4283662635 title "Prediction of Daily Ambient Temperature and Its Hourly Estimation Using Artificial Neural Networks in an Agrometeorological Station in Castile and León, Spain" @default.
- W4283662635 cites W1994319753 @default.
- W4283662635 cites W2000716539 @default.
- W4283662635 cites W2007239252 @default.
- W4283662635 cites W2032007905 @default.
- W4283662635 cites W2182045734 @default.
- W4283662635 cites W2395008936 @default.
- W4283662635 cites W2559986336 @default.
- W4283662635 cites W2560398905 @default.
- W4283662635 cites W2770073827 @default.
- W4283662635 cites W2782450437 @default.
- W4283662635 cites W2915755045 @default.
- W4283662635 cites W2921467030 @default.
- W4283662635 cites W2957564760 @default.
- W4283662635 cites W2983243964 @default.
- W4283662635 cites W2990957319 @default.
- W4283662635 cites W2999952798 @default.
- W4283662635 cites W3131745224 @default.
- W4283662635 cites W4210557061 @default.
- W4283662635 doi "https://doi.org/10.3390/s22134850" @default.
- W4283662635 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35808346" @default.
- W4283662635 hasPublicationYear "2022" @default.
- W4283662635 type Work @default.
- W4283662635 citedByCount "3" @default.
- W4283662635 countsByYear W42836626352022 @default.
- W4283662635 countsByYear W42836626352023 @default.
- W4283662635 crossrefType "journal-article" @default.
- W4283662635 hasAuthorship W4283662635A5011280736 @default.
- W4283662635 hasAuthorship W4283662635A5015002161 @default.
- W4283662635 hasAuthorship W4283662635A5043691001 @default.
- W4283662635 hasAuthorship W4283662635A5054458683 @default.
- W4283662635 hasAuthorship W4283662635A5058678815 @default.
- W4283662635 hasAuthorship W4283662635A5065543825 @default.
- W4283662635 hasAuthorship W4283662635A5087363497 @default.
- W4283662635 hasBestOaLocation W42836626351 @default.
- W4283662635 hasConcept C105795698 @default.
- W4283662635 hasConcept C119857082 @default.
- W4283662635 hasConcept C139945424 @default.
- W4283662635 hasConcept C153294291 @default.
- W4283662635 hasConcept C205649164 @default.
- W4283662635 hasConcept C206145494 @default.
- W4283662635 hasConcept C2986587452 @default.
- W4283662635 hasConcept C33923547 @default.
- W4283662635 hasConcept C41008148 @default.
- W4283662635 hasConcept C48921125 @default.
- W4283662635 hasConcept C50644808 @default.
- W4283662635 hasConceptScore W4283662635C105795698 @default.
- W4283662635 hasConceptScore W4283662635C119857082 @default.
- W4283662635 hasConceptScore W4283662635C139945424 @default.
- W4283662635 hasConceptScore W4283662635C153294291 @default.
- W4283662635 hasConceptScore W4283662635C205649164 @default.
- W4283662635 hasConceptScore W4283662635C206145494 @default.
- W4283662635 hasConceptScore W4283662635C2986587452 @default.
- W4283662635 hasConceptScore W4283662635C33923547 @default.
- W4283662635 hasConceptScore W4283662635C41008148 @default.
- W4283662635 hasConceptScore W4283662635C48921125 @default.
- W4283662635 hasConceptScore W4283662635C50644808 @default.
- W4283662635 hasIssue "13" @default.
- W4283662635 hasLocation W42836626351 @default.
- W4283662635 hasLocation W42836626352 @default.
- W4283662635 hasLocation W42836626353 @default.
- W4283662635 hasLocation W42836626354 @default.
- W4283662635 hasOpenAccess W4283662635 @default.
- W4283662635 hasPrimaryLocation W42836626351 @default.
- W4283662635 hasRelatedWork W2037290303 @default.
- W4283662635 hasRelatedWork W2100221774 @default.
- W4283662635 hasRelatedWork W2409092870 @default.
- W4283662635 hasRelatedWork W3004809397 @default.
- W4283662635 hasRelatedWork W3017119374 @default.
- W4283662635 hasRelatedWork W3113443958 @default.
- W4283662635 hasRelatedWork W3128923042 @default.
- W4283662635 hasRelatedWork W3140597780 @default.
- W4283662635 hasRelatedWork W4256402687 @default.
- W4283662635 hasRelatedWork W3111430581 @default.
- W4283662635 hasVolume "22" @default.
- W4283662635 isParatext "false" @default.
- W4283662635 isRetracted "false" @default.
- W4283662635 workType "article" @default.