Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283697029> ?p ?o ?g. }
- W4283697029 abstract "This study presents accuracy assessment of decision tree, random forest, support vector machine, neural network, and Naïve Bayes classifiers used in thyroid classification problem. Utilising thyroid data from the University of California, Irvine repository, the study applied synthetic minority oversampling technique to resolve imbalanced dataset and avoid the likelihood of overfitting, reservoir sampling technique to split the augmented data into sample sizes, and 10-fold cross-validation to measure the unbiased accuracy of the models across the sample sizes in Weka. The random forest classifier yielded 99.075% accuracy, decision tree and support vector machine achieved 98.500% accuracy, neural network produced 98.375% accuracy, and the Naïve Bayes classifier generated the least classification accuracy of 98.200%. The accuracy assessments across sample sizes are statically identical with each classifier beating the other classifiers on one of the datasets, which revealed the existence of a trade-off between classification accuracy and time complexities." @default.
- W4283697029 created "2022-06-30" @default.
- W4283697029 creator A5016831174 @default.
- W4283697029 creator A5023956296 @default.
- W4283697029 creator A5066613843 @default.
- W4283697029 creator A5067397612 @default.
- W4283697029 creator A5077409293 @default.
- W4283697029 date "2022-04-17" @default.
- W4283697029 modified "2023-09-30" @default.
- W4283697029 title "Accuracy Assessment of Machine Learning Algorithm(s) in Thyroid Dysfunction Diagnosis" @default.
- W4283697029 cites W15148259 @default.
- W4283697029 cites W1555243480 @default.
- W4283697029 cites W1974925885 @default.
- W4283697029 cites W1977916156 @default.
- W4283697029 cites W2008998164 @default.
- W4283697029 cites W2014002054 @default.
- W4283697029 cites W2026557553 @default.
- W4283697029 cites W2043383144 @default.
- W4283697029 cites W2074786619 @default.
- W4283697029 cites W2123504579 @default.
- W4283697029 cites W2132896411 @default.
- W4283697029 cites W2132996843 @default.
- W4283697029 cites W2148143831 @default.
- W4283697029 cites W2148239836 @default.
- W4283697029 cites W2172487091 @default.
- W4283697029 cites W2230508580 @default.
- W4283697029 cites W2424628474 @default.
- W4283697029 cites W2530103281 @default.
- W4283697029 cites W2543382288 @default.
- W4283697029 cites W2624492365 @default.
- W4283697029 cites W2773413394 @default.
- W4283697029 cites W2790062695 @default.
- W4283697029 cites W2792395221 @default.
- W4283697029 cites W2881639099 @default.
- W4283697029 cites W2898347473 @default.
- W4283697029 cites W2908804667 @default.
- W4283697029 cites W2951027907 @default.
- W4283697029 cites W2955071015 @default.
- W4283697029 cites W2963737761 @default.
- W4283697029 cites W3008217256 @default.
- W4283697029 cites W3013330736 @default.
- W4283697029 cites W3130332260 @default.
- W4283697029 cites W3168513978 @default.
- W4283697029 cites W3201888084 @default.
- W4283697029 cites W4230887410 @default.
- W4283697029 doi "https://doi.org/10.1109/nigercon54645.2022.9803113" @default.
- W4283697029 hasPublicationYear "2022" @default.
- W4283697029 type Work @default.
- W4283697029 citedByCount "1" @default.
- W4283697029 countsByYear W42836970292023 @default.
- W4283697029 crossrefType "proceedings-article" @default.
- W4283697029 hasAuthorship W4283697029A5016831174 @default.
- W4283697029 hasAuthorship W4283697029A5023956296 @default.
- W4283697029 hasAuthorship W4283697029A5066613843 @default.
- W4283697029 hasAuthorship W4283697029A5067397612 @default.
- W4283697029 hasAuthorship W4283697029A5077409293 @default.
- W4283697029 hasConcept C110083411 @default.
- W4283697029 hasConcept C119857082 @default.
- W4283697029 hasConcept C12267149 @default.
- W4283697029 hasConcept C124101348 @default.
- W4283697029 hasConcept C153180895 @default.
- W4283697029 hasConcept C154945302 @default.
- W4283697029 hasConcept C169258074 @default.
- W4283697029 hasConcept C197323446 @default.
- W4283697029 hasConcept C22019652 @default.
- W4283697029 hasConcept C27181475 @default.
- W4283697029 hasConcept C2776257435 @default.
- W4283697029 hasConcept C31258907 @default.
- W4283697029 hasConcept C41008148 @default.
- W4283697029 hasConcept C50644808 @default.
- W4283697029 hasConcept C52001869 @default.
- W4283697029 hasConcept C84525736 @default.
- W4283697029 hasConcept C95623464 @default.
- W4283697029 hasConceptScore W4283697029C110083411 @default.
- W4283697029 hasConceptScore W4283697029C119857082 @default.
- W4283697029 hasConceptScore W4283697029C12267149 @default.
- W4283697029 hasConceptScore W4283697029C124101348 @default.
- W4283697029 hasConceptScore W4283697029C153180895 @default.
- W4283697029 hasConceptScore W4283697029C154945302 @default.
- W4283697029 hasConceptScore W4283697029C169258074 @default.
- W4283697029 hasConceptScore W4283697029C197323446 @default.
- W4283697029 hasConceptScore W4283697029C22019652 @default.
- W4283697029 hasConceptScore W4283697029C27181475 @default.
- W4283697029 hasConceptScore W4283697029C2776257435 @default.
- W4283697029 hasConceptScore W4283697029C31258907 @default.
- W4283697029 hasConceptScore W4283697029C41008148 @default.
- W4283697029 hasConceptScore W4283697029C50644808 @default.
- W4283697029 hasConceptScore W4283697029C52001869 @default.
- W4283697029 hasConceptScore W4283697029C84525736 @default.
- W4283697029 hasConceptScore W4283697029C95623464 @default.
- W4283697029 hasLocation W42836970291 @default.
- W4283697029 hasOpenAccess W4283697029 @default.
- W4283697029 hasPrimaryLocation W42836970291 @default.
- W4283697029 hasRelatedWork W3176795340 @default.
- W4283697029 hasRelatedWork W3186233728 @default.
- W4283697029 hasRelatedWork W4283697029 @default.
- W4283697029 hasRelatedWork W4285407528 @default.
- W4283697029 hasRelatedWork W4319718059 @default.
- W4283697029 hasRelatedWork W4362544985 @default.
- W4283697029 hasRelatedWork W4366768903 @default.