Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283697413> ?p ?o ?g. }
- W4283697413 endingPage "119251" @default.
- W4283697413 startingPage "119251" @default.
- W4283697413 abstract "Poor indoor air quality has adverse health impacts. Children are considered a risk group, and they spend a significant time indoors at home and in schools. Air quality monitoring has traditionally been limited due to the cost and size of the monitoring stations. Recent advancements in low-cost sensors technology allow for economical, scalable and real-time monitoring, which is especially helpful in monitoring air quality in indoor environments, as they are prone to sudden peaks in pollutant concentrations. However, data reliability is still a considerable challenge to overcome in low-cost sensors technology. Thus, following a monitoring campaign in a nursery and primary school in Porto urban area, the present study analyzed the performance of three commercially available low-cost IoT devices for indoor air quality monitoring in real-world against a research-grade device used as a reference and developed regression models to improve their reliability. This paper also presents the developed on-field calibration models via machine learning technique using multiple linear regression, support vector regression, and gradient boosting regression algorithms and focuses on particulate matter (PM1, PM2.5, PM10) data collected by the devices. The performance evaluation results showed poor detection of particulates in classrooms by the low-cost devices compared to the reference. The on-field calibration algorithms showed a considerable improvement in all three devices' accuracy (reaching up to R2 > 0.9) for the light scattering technology based particulate matter sensors. The results also show the different performance of low-cost devices in the lunchroom compared to the classrooms of the same school building, indicating the need for calibration in different microenvironments." @default.
- W4283697413 created "2022-06-30" @default.
- W4283697413 creator A5019600463 @default.
- W4283697413 creator A5028929333 @default.
- W4283697413 creator A5068812624 @default.
- W4283697413 creator A5083951389 @default.
- W4283697413 creator A5088789334 @default.
- W4283697413 date "2022-10-01" @default.
- W4283697413 modified "2023-10-06" @default.
- W4283697413 title "Can data reliability of low-cost sensor devices for indoor air particulate matter monitoring be improved? – An approach using machine learning" @default.
- W4283697413 cites W1964357740 @default.
- W4283697413 cites W1965008186 @default.
- W4283697413 cites W2000802392 @default.
- W4283697413 cites W2003288927 @default.
- W4283697413 cites W2010267268 @default.
- W4283697413 cites W2052646972 @default.
- W4283697413 cites W2062739738 @default.
- W4283697413 cites W2070493638 @default.
- W4283697413 cites W2075351671 @default.
- W4283697413 cites W2079098817 @default.
- W4283697413 cites W2088805671 @default.
- W4283697413 cites W2125085327 @default.
- W4283697413 cites W2132279208 @default.
- W4283697413 cites W2135043443 @default.
- W4283697413 cites W2153635508 @default.
- W4283697413 cites W2159200188 @default.
- W4283697413 cites W2164586666 @default.
- W4283697413 cites W2295679220 @default.
- W4283697413 cites W2463391426 @default.
- W4283697413 cites W2617858335 @default.
- W4283697413 cites W2618601533 @default.
- W4283697413 cites W2737680781 @default.
- W4283697413 cites W2741056528 @default.
- W4283697413 cites W2797612288 @default.
- W4283697413 cites W2801004185 @default.
- W4283697413 cites W2801959627 @default.
- W4283697413 cites W2901133697 @default.
- W4283697413 cites W2904147937 @default.
- W4283697413 cites W2904396437 @default.
- W4283697413 cites W2904614201 @default.
- W4283697413 cites W2906135971 @default.
- W4283697413 cites W2944912517 @default.
- W4283697413 cites W2950911222 @default.
- W4283697413 cites W2994197128 @default.
- W4283697413 cites W3001049522 @default.
- W4283697413 cites W3004329463 @default.
- W4283697413 cites W3015224255 @default.
- W4283697413 cites W3029679877 @default.
- W4283697413 cites W3041747533 @default.
- W4283697413 cites W3042226465 @default.
- W4283697413 cites W3109504479 @default.
- W4283697413 cites W3119838884 @default.
- W4283697413 cites W3129420242 @default.
- W4283697413 cites W3177891837 @default.
- W4283697413 cites W3193757807 @default.
- W4283697413 cites W3204457581 @default.
- W4283697413 cites W949452758 @default.
- W4283697413 doi "https://doi.org/10.1016/j.atmosenv.2022.119251" @default.
- W4283697413 hasPublicationYear "2022" @default.
- W4283697413 type Work @default.
- W4283697413 citedByCount "7" @default.
- W4283697413 countsByYear W42836974132023 @default.
- W4283697413 crossrefType "journal-article" @default.
- W4283697413 hasAuthorship W4283697413A5019600463 @default.
- W4283697413 hasAuthorship W4283697413A5028929333 @default.
- W4283697413 hasAuthorship W4283697413A5068812624 @default.
- W4283697413 hasAuthorship W4283697413A5083951389 @default.
- W4283697413 hasAuthorship W4283697413A5088789334 @default.
- W4283697413 hasBestOaLocation W42836974131 @default.
- W4283697413 hasConcept C105795698 @default.
- W4283697413 hasConcept C121332964 @default.
- W4283697413 hasConcept C126314574 @default.
- W4283697413 hasConcept C127413603 @default.
- W4283697413 hasConcept C153294291 @default.
- W4283697413 hasConcept C163258240 @default.
- W4283697413 hasConcept C165838908 @default.
- W4283697413 hasConcept C18903297 @default.
- W4283697413 hasConcept C200601418 @default.
- W4283697413 hasConcept C205649164 @default.
- W4283697413 hasConcept C24245907 @default.
- W4283697413 hasConcept C33923547 @default.
- W4283697413 hasConcept C39432304 @default.
- W4283697413 hasConcept C41008148 @default.
- W4283697413 hasConcept C43214815 @default.
- W4283697413 hasConcept C62520636 @default.
- W4283697413 hasConcept C65469 @default.
- W4283697413 hasConcept C86803240 @default.
- W4283697413 hasConcept C87717796 @default.
- W4283697413 hasConceptScore W4283697413C105795698 @default.
- W4283697413 hasConceptScore W4283697413C121332964 @default.
- W4283697413 hasConceptScore W4283697413C126314574 @default.
- W4283697413 hasConceptScore W4283697413C127413603 @default.
- W4283697413 hasConceptScore W4283697413C153294291 @default.
- W4283697413 hasConceptScore W4283697413C163258240 @default.
- W4283697413 hasConceptScore W4283697413C165838908 @default.
- W4283697413 hasConceptScore W4283697413C18903297 @default.
- W4283697413 hasConceptScore W4283697413C200601418 @default.
- W4283697413 hasConceptScore W4283697413C205649164 @default.