Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283698052> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4283698052 endingPage "13" @default.
- W4283698052 startingPage "1" @default.
- W4283698052 abstract "The so-called multimodal information refers to the information from different information sources on different or the same side of the same description target. These pieces of information are different in terms of storage structure, representation, semantic connotation, credibility, and emphasis, but there is a certain inevitable connection between them. This paper aims to study how to analyze and study the low carbon of enterprises with the help of multimodal information fusion based on the background of big data and construct the evolutionary neural network of the improved adaptive genetic algorithm. This paper puts forward the problem of low carbon in enterprises, which is based on multimodal information fusion, and then elaborates on the concept and related algorithms of multimodal information fusion. Information fusion has carried out case design and analysis. Through the research and analysis of enterprise low carbon and self-adaptive algorithm, it can be obtained that the neural network has reached the threshold of 3.95 after iterating for nearly 60 generations, and stopped iterating to obtain the best individual. The evolutionary neural network in this paper reaches stability after a small number of iterations and can basically achieve a certain low carbonization." @default.
- W4283698052 created "2022-06-30" @default.
- W4283698052 creator A5059126461 @default.
- W4283698052 date "2022-06-28" @default.
- W4283698052 modified "2023-09-26" @default.
- W4283698052 title "Low-Carbon Awareness Information Technology of Enterprise Executives Based on Big Data and Multimodal Information Fusion" @default.
- W4283698052 cites W2519720254 @default.
- W4283698052 cites W2560803908 @default.
- W4283698052 cites W2789996944 @default.
- W4283698052 cites W2795771851 @default.
- W4283698052 cites W2889405224 @default.
- W4283698052 cites W2900323013 @default.
- W4283698052 cites W2933753254 @default.
- W4283698052 cites W2941696098 @default.
- W4283698052 cites W2980779456 @default.
- W4283698052 cites W2998255721 @default.
- W4283698052 cites W3016730858 @default.
- W4283698052 cites W3087647883 @default.
- W4283698052 cites W3093322018 @default.
- W4283698052 cites W3111354616 @default.
- W4283698052 cites W3124848429 @default.
- W4283698052 cites W3125113672 @default.
- W4283698052 cites W3137352160 @default.
- W4283698052 cites W3159945478 @default.
- W4283698052 cites W4206180959 @default.
- W4283698052 cites W4210296532 @default.
- W4283698052 cites W4226243606 @default.
- W4283698052 doi "https://doi.org/10.1155/2022/1534440" @default.
- W4283698052 hasPublicationYear "2022" @default.
- W4283698052 type Work @default.
- W4283698052 citedByCount "2" @default.
- W4283698052 countsByYear W42836980522022 @default.
- W4283698052 countsByYear W42836980522023 @default.
- W4283698052 crossrefType "journal-article" @default.
- W4283698052 hasAuthorship W4283698052A5059126461 @default.
- W4283698052 hasBestOaLocation W42836980521 @default.
- W4283698052 hasConcept C124101348 @default.
- W4283698052 hasConcept C138885662 @default.
- W4283698052 hasConcept C154945302 @default.
- W4283698052 hasConcept C17744445 @default.
- W4283698052 hasConcept C199360897 @default.
- W4283698052 hasConcept C199539241 @default.
- W4283698052 hasConcept C2776359362 @default.
- W4283698052 hasConcept C2778120531 @default.
- W4283698052 hasConcept C2780801425 @default.
- W4283698052 hasConcept C2982962833 @default.
- W4283698052 hasConcept C33954974 @default.
- W4283698052 hasConcept C41008148 @default.
- W4283698052 hasConcept C41895202 @default.
- W4283698052 hasConcept C50644808 @default.
- W4283698052 hasConcept C75684735 @default.
- W4283698052 hasConcept C94625758 @default.
- W4283698052 hasConceptScore W4283698052C124101348 @default.
- W4283698052 hasConceptScore W4283698052C138885662 @default.
- W4283698052 hasConceptScore W4283698052C154945302 @default.
- W4283698052 hasConceptScore W4283698052C17744445 @default.
- W4283698052 hasConceptScore W4283698052C199360897 @default.
- W4283698052 hasConceptScore W4283698052C199539241 @default.
- W4283698052 hasConceptScore W4283698052C2776359362 @default.
- W4283698052 hasConceptScore W4283698052C2778120531 @default.
- W4283698052 hasConceptScore W4283698052C2780801425 @default.
- W4283698052 hasConceptScore W4283698052C2982962833 @default.
- W4283698052 hasConceptScore W4283698052C33954974 @default.
- W4283698052 hasConceptScore W4283698052C41008148 @default.
- W4283698052 hasConceptScore W4283698052C41895202 @default.
- W4283698052 hasConceptScore W4283698052C50644808 @default.
- W4283698052 hasConceptScore W4283698052C75684735 @default.
- W4283698052 hasConceptScore W4283698052C94625758 @default.
- W4283698052 hasFunder F4320326664 @default.
- W4283698052 hasLocation W42836980521 @default.
- W4283698052 hasOpenAccess W4283698052 @default.
- W4283698052 hasPrimaryLocation W42836980521 @default.
- W4283698052 hasRelatedWork W1995902269 @default.
- W4283698052 hasRelatedWork W2072757876 @default.
- W4283698052 hasRelatedWork W2353144671 @default.
- W4283698052 hasRelatedWork W2357931824 @default.
- W4283698052 hasRelatedWork W2360269731 @default.
- W4283698052 hasRelatedWork W2379324683 @default.
- W4283698052 hasRelatedWork W2381301974 @default.
- W4283698052 hasRelatedWork W2924411667 @default.
- W4283698052 hasRelatedWork W3200288307 @default.
- W4283698052 hasRelatedWork W55257126 @default.
- W4283698052 hasVolume "2022" @default.
- W4283698052 isParatext "false" @default.
- W4283698052 isRetracted "false" @default.
- W4283698052 workType "article" @default.