Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283704792> ?p ?o ?g. }
- W4283704792 endingPage "4736" @default.
- W4283704792 startingPage "4736" @default.
- W4283704792 abstract "This paper presents the results of a comparative analysis of Convolutional Neural Network (CNN) and Support Vector Machine (SVM) models created for the prediction of the extent and intensity of damage caused to multi-storey reinforced concrete (RC) buildings. The research was conducted on a group of residential buildings, which were subjected to mining impacts in the form of surface deformations and rock mass tremors during their technical life cycle. Damage to buildings poses a significant threat to the safety of the structure and the serviceability of the buildings. They are often the cause of breaks in thermal insulation, which leads to excessive consumption of thermal energy used for space heating, which in turn contributes to over-emissions of CO2 into the atmosphere. Therefore, this problem is important, not only from a technical dimension, but also includes social, economic, and environmental aspects, which allows it to be classified as an issue of sustainable development in the building industry. As a result of the conducted analysis, among the CNN models, the highest level of classification accuracy was the model obtained using the ADAM (derived from adaptive moment estimation) algorithm, which was also characterized by a very high level of generalization, obtaining 80.35% correctly classified patterns for the training set and 80.52% for the test set. However, its accuracy level was slightly lower than that of the SVM model (85.15% for the training set and 84.42% for the test set), in which Bayesian optimization was used to determine the parameters. The analysis confirmed the effectiveness of the adopted methodology for predicting the extent and intensity of damage. The developed tool can support the optimization of building maintenance management, resulting in reduced economic and environmental expenditures for renovations." @default.
- W4283704792 created "2022-06-30" @default.
- W4283704792 creator A5014716129 @default.
- W4283704792 creator A5021296638 @default.
- W4283704792 creator A5046069555 @default.
- W4283704792 date "2022-06-28" @default.
- W4283704792 modified "2023-10-01" @default.
- W4283704792 title "Convolutional Neural Network and Support Vector Machine for Prediction of Damage Intensity to Multi-Storey Prefabricated RC Buildings" @default.
- W4283704792 cites W151108041 @default.
- W4283704792 cites W1964357740 @default.
- W4283704792 cites W2117539524 @default.
- W4283704792 cites W2153635508 @default.
- W4283704792 cites W2162636304 @default.
- W4283704792 cites W2398593111 @default.
- W4283704792 cites W2417361793 @default.
- W4283704792 cites W2549697828 @default.
- W4283704792 cites W2565715817 @default.
- W4283704792 cites W2735527483 @default.
- W4283704792 cites W2790554918 @default.
- W4283704792 cites W2794699585 @default.
- W4283704792 cites W2809254203 @default.
- W4283704792 cites W2810228419 @default.
- W4283704792 cites W2899298368 @default.
- W4283704792 cites W2902747478 @default.
- W4283704792 cites W2914423358 @default.
- W4283704792 cites W2916746317 @default.
- W4283704792 cites W2987361643 @default.
- W4283704792 cites W2990917925 @default.
- W4283704792 cites W2991074454 @default.
- W4283704792 cites W2994067232 @default.
- W4283704792 cites W2998158911 @default.
- W4283704792 cites W2999309192 @default.
- W4283704792 cites W3006335362 @default.
- W4283704792 cites W3008058477 @default.
- W4283704792 cites W3012214319 @default.
- W4283704792 cites W3022955483 @default.
- W4283704792 cites W3034167921 @default.
- W4283704792 cites W3036955727 @default.
- W4283704792 cites W3088752621 @default.
- W4283704792 cites W3095115283 @default.
- W4283704792 cites W3111282395 @default.
- W4283704792 cites W3129556078 @default.
- W4283704792 cites W3135641799 @default.
- W4283704792 cites W3140854437 @default.
- W4283704792 cites W3190382256 @default.
- W4283704792 cites W3196585046 @default.
- W4283704792 cites W3209648160 @default.
- W4283704792 cites W4206787231 @default.
- W4283704792 cites W4281990887 @default.
- W4283704792 doi "https://doi.org/10.3390/en15134736" @default.
- W4283704792 hasPublicationYear "2022" @default.
- W4283704792 type Work @default.
- W4283704792 citedByCount "5" @default.
- W4283704792 countsByYear W42837047922022 @default.
- W4283704792 countsByYear W42837047922023 @default.
- W4283704792 crossrefType "journal-article" @default.
- W4283704792 hasAuthorship W4283704792A5014716129 @default.
- W4283704792 hasAuthorship W4283704792A5021296638 @default.
- W4283704792 hasAuthorship W4283704792A5046069555 @default.
- W4283704792 hasBestOaLocation W42837047921 @default.
- W4283704792 hasConcept C110245778 @default.
- W4283704792 hasConcept C119857082 @default.
- W4283704792 hasConcept C12267149 @default.
- W4283704792 hasConcept C127413603 @default.
- W4283704792 hasConcept C154945302 @default.
- W4283704792 hasConcept C169903167 @default.
- W4283704792 hasConcept C22019652 @default.
- W4283704792 hasConcept C41008148 @default.
- W4283704792 hasConcept C50644808 @default.
- W4283704792 hasConcept C66938386 @default.
- W4283704792 hasConcept C81363708 @default.
- W4283704792 hasConceptScore W4283704792C110245778 @default.
- W4283704792 hasConceptScore W4283704792C119857082 @default.
- W4283704792 hasConceptScore W4283704792C12267149 @default.
- W4283704792 hasConceptScore W4283704792C127413603 @default.
- W4283704792 hasConceptScore W4283704792C154945302 @default.
- W4283704792 hasConceptScore W4283704792C169903167 @default.
- W4283704792 hasConceptScore W4283704792C22019652 @default.
- W4283704792 hasConceptScore W4283704792C41008148 @default.
- W4283704792 hasConceptScore W4283704792C50644808 @default.
- W4283704792 hasConceptScore W4283704792C66938386 @default.
- W4283704792 hasConceptScore W4283704792C81363708 @default.
- W4283704792 hasIssue "13" @default.
- W4283704792 hasLocation W42837047921 @default.
- W4283704792 hasLocation W42837047922 @default.
- W4283704792 hasOpenAccess W4283704792 @default.
- W4283704792 hasPrimaryLocation W42837047921 @default.
- W4283704792 hasRelatedWork W1996541855 @default.
- W4283704792 hasRelatedWork W2767651786 @default.
- W4283704792 hasRelatedWork W2989932438 @default.
- W4283704792 hasRelatedWork W2996933976 @default.
- W4283704792 hasRelatedWork W3012393889 @default.
- W4283704792 hasRelatedWork W3081496756 @default.
- W4283704792 hasRelatedWork W3099765033 @default.
- W4283704792 hasRelatedWork W3127819136 @default.
- W4283704792 hasRelatedWork W4210794429 @default.
- W4283704792 hasRelatedWork W4220996320 @default.
- W4283704792 hasVolume "15" @default.