Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283713168> ?p ?o ?g. }
- W4283713168 endingPage "103366" @default.
- W4283713168 startingPage "103366" @default.
- W4283713168 abstract "• A CZM–CPFE method considering the temperature effect to reveal the intergranular cracking was developed and validated by in–situ SEM. • The CZM-CPFE describes the mechanical response of grain interiors and the damage and failure of GBs. • LAGBs of TWIP steels delay intergranular fracture, while the GBs at 40°–70° are most easily damaged. • UTS and failure strain of TWIP steels are increased with the decreasing grain size. • The intersection between the GBs and the larger size microvoids facilitates microcrack initiation and intergranular cracking. Grain boundaries (GBs) of metallic materials will become the weakest and most vulnerable place when the materials deform at high temperature. This could directly affect deformation flow, plastic strengthening, the initiation and propagation of microcracks, and finally the fracture failure of materials. In this research, to reveal the high temperature deformation mechanisms of twinning–induced plasticity (TWIP) steels, the crystal plasticity finite element method (CPFEM) was employed to model the mechanical response of grain interiors. The cohesive zone model (CZM) of the bi–linear traction separation law (TSL) was developed to describe the damage and failure of GBs. By combining CZM and CPFEM, an analysis method was proposed to investigate the effect of the microstructure morphology, orientation and size of grains, and temperature. Furthermore, the damage initiation, accumulation and fracture at GBs were represented by the representative volume element model based on the CZM–CPFE method to explore the influences of GB angle, grain size and local microvoids (including the location and size) on the GB cracking. The stress damage cloud maps, the distribution of quadratic stress damage initiation criterion (QUADSCRT) and the scalar stiffness degradation (SDEG) describing the damage and fracture along the GBs were used to articulate the relationships of GB angle, size effect, local microvoids and the expected failure strain. The results show that low angle grain boundaries (LAGBs), the small average grain size (<21.2 μm), microvoids at the horizontal GBs and microvoids with a diameter below 1.5 μm can delay the initiation of microcracks and fracture failure along the GBs. The predicted damage and failure of GBs and the intergranular cracking characteristics in plastic deformation of TWIP steels at high temperature were corroborated by microscopic in–situ SEM experiments, in which the deformation characteristics inside the grains, and microcrack initiation and propagation near GBs were observed at 500 and 750°C. This research enhances the understanding of intergranular fracture, mechanical response and microstructure evolution of TWIP steels worked at different temperatures, and also provides a new way and strategy for studying the deformation behaviours of TWIP steels considering GB properties." @default.
- W4283713168 created "2022-06-30" @default.
- W4283713168 creator A5017453350 @default.
- W4283713168 creator A5020166351 @default.
- W4283713168 creator A5036124105 @default.
- W4283713168 creator A5042680484 @default.
- W4283713168 creator A5075990374 @default.
- W4283713168 creator A5088430554 @default.
- W4283713168 date "2022-09-01" @default.
- W4283713168 modified "2023-10-15" @default.
- W4283713168 title "Modelling of the intergranular fracture of TWIP steels working at high temperature by using CZM–CPFE method" @default.
- W4283713168 cites W1125182529 @default.
- W4283713168 cites W1421693947 @default.
- W4283713168 cites W1979032590 @default.
- W4283713168 cites W1979318701 @default.
- W4283713168 cites W2006960311 @default.
- W4283713168 cites W2013087852 @default.
- W4283713168 cites W2014019573 @default.
- W4283713168 cites W2018281371 @default.
- W4283713168 cites W2022408710 @default.
- W4283713168 cites W2030833446 @default.
- W4283713168 cites W2030897759 @default.
- W4283713168 cites W2032793548 @default.
- W4283713168 cites W2034869991 @default.
- W4283713168 cites W2046660839 @default.
- W4283713168 cites W2048573689 @default.
- W4283713168 cites W2050236324 @default.
- W4283713168 cites W2050939831 @default.
- W4283713168 cites W2051709907 @default.
- W4283713168 cites W2056160762 @default.
- W4283713168 cites W2056898244 @default.
- W4283713168 cites W2058863742 @default.
- W4283713168 cites W2060372222 @default.
- W4283713168 cites W2061690100 @default.
- W4283713168 cites W2063656404 @default.
- W4283713168 cites W2066928252 @default.
- W4283713168 cites W2068767333 @default.
- W4283713168 cites W2084189654 @default.
- W4283713168 cites W2088662225 @default.
- W4283713168 cites W2090869628 @default.
- W4283713168 cites W2092257543 @default.
- W4283713168 cites W2094334248 @default.
- W4283713168 cites W2113196236 @default.
- W4283713168 cites W2117018963 @default.
- W4283713168 cites W2133174787 @default.
- W4283713168 cites W2133683500 @default.
- W4283713168 cites W2166470440 @default.
- W4283713168 cites W2171493479 @default.
- W4283713168 cites W2410265413 @default.
- W4283713168 cites W2518652644 @default.
- W4283713168 cites W2607473331 @default.
- W4283713168 cites W2626130902 @default.
- W4283713168 cites W2651894342 @default.
- W4283713168 cites W2756126603 @default.
- W4283713168 cites W2758550800 @default.
- W4283713168 cites W2761643893 @default.
- W4283713168 cites W2766793269 @default.
- W4283713168 cites W2796082380 @default.
- W4283713168 cites W2810883241 @default.
- W4283713168 cites W2811077135 @default.
- W4283713168 cites W2903591476 @default.
- W4283713168 cites W2909530389 @default.
- W4283713168 cites W2910859840 @default.
- W4283713168 cites W2915037218 @default.
- W4283713168 cites W2944759252 @default.
- W4283713168 cites W2944779577 @default.
- W4283713168 cites W2949830701 @default.
- W4283713168 cites W2952674913 @default.
- W4283713168 cites W2962533052 @default.
- W4283713168 cites W2962850573 @default.
- W4283713168 cites W2974309207 @default.
- W4283713168 cites W3005049280 @default.
- W4283713168 cites W3007253072 @default.
- W4283713168 cites W3014268799 @default.
- W4283713168 cites W3043472756 @default.
- W4283713168 cites W3093639431 @default.
- W4283713168 cites W3097018952 @default.
- W4283713168 cites W3108919515 @default.
- W4283713168 cites W3117955934 @default.
- W4283713168 cites W3144089244 @default.
- W4283713168 cites W3204198864 @default.
- W4283713168 cites W4200014963 @default.
- W4283713168 cites W4200504606 @default.
- W4283713168 cites W4200519255 @default.
- W4283713168 cites W4205116362 @default.
- W4283713168 cites W4205451621 @default.
- W4283713168 cites W4206320355 @default.
- W4283713168 cites W4206382732 @default.
- W4283713168 cites W4206601347 @default.
- W4283713168 cites W4221024755 @default.
- W4283713168 cites W4224324774 @default.
- W4283713168 cites W4280562323 @default.
- W4283713168 doi "https://doi.org/10.1016/j.ijplas.2022.103366" @default.
- W4283713168 hasPublicationYear "2022" @default.
- W4283713168 type Work @default.
- W4283713168 citedByCount "6" @default.
- W4283713168 countsByYear W42837131682023 @default.
- W4283713168 crossrefType "journal-article" @default.