Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283713636> ?p ?o ?g. }
- W4283713636 endingPage "11" @default.
- W4283713636 startingPage "1" @default.
- W4283713636 abstract "The widening of coronavirus disease (COVID-19) across the globe has put both the government and humanity at risk. The funds of part of the biggest recessions are stressed out due to the severe infectivity rates and highly communicable nature of this disease. Due to the expanding consequence of cases being registered and their successive significance on the civic body administration and health professionals, certain prediction methods are intended to be necessitated to predict the number of cases in the future. In this paper, nonlinear cosine-based time series learning (NCTL) is introduced for the prediction and analysis of COVID-19 in India. First, the nonlinear least squares regressive feature selection (NLS-RFS) model is used for choosing the relevant features by considering both the active cases with less prediction error. Next, the cosine-based neighborhood filter algorithm is applied to attain the optimum filtered features to select relevant features with minimum prediction time. Finally, cosine neighborhood-based LSTM is used for the prediction of the number of COVID-19 cases being registered in India to the fore and consequence of precautionary measures like social distancing, lockdown, and declaring containment zones on the outspread of COVID-19. The existing deep learning methods’ prediction accuracy was not enhanced with lesser time. In order to overcome the issue, the nonlinear cosine-based time series learning (NCTL) method has been introduced. The aim of the proposed NCTL method is to predict the number of COVID-19 cases with less prediction time and prediction error. This helps to enhance the prediction accuracy for considering the time series with accurate prediction results. The experiment of the NCTL method is conducted using metrics such as accuracy, prediction error, prediction accuracy, and prediction time with respect to diverse samples. The simulation result illustrates that the NCTL method increases the prediction accuracy by 8%, reduces the prediction time by 18%, and minimizes the prediction error by 31% compared to state-of-the-art works in a computationally efficient manner." @default.
- W4283713636 created "2022-06-30" @default.
- W4283713636 creator A5012433208 @default.
- W4283713636 creator A5027454208 @default.
- W4283713636 creator A5038409745 @default.
- W4283713636 creator A5057090641 @default.
- W4283713636 creator A5069053230 @default.
- W4283713636 creator A5082675058 @default.
- W4283713636 date "2022-06-29" @default.
- W4283713636 modified "2023-10-02" @default.
- W4283713636 title "Nonlinear Cosine Neighborhood Time Series-Based Deep Learning for the Prediction and Analysis of COVID-19 in India" @default.
- W4283713636 cites W2791196845 @default.
- W4283713636 cites W3006028741 @default.
- W4283713636 cites W3012434404 @default.
- W4283713636 cites W3013022943 @default.
- W4283713636 cites W3015542196 @default.
- W4283713636 cites W3016236951 @default.
- W4283713636 cites W3017117984 @default.
- W4283713636 cites W3020514163 @default.
- W4283713636 cites W3021303430 @default.
- W4283713636 cites W3025352604 @default.
- W4283713636 cites W3030109869 @default.
- W4283713636 cites W3030419021 @default.
- W4283713636 cites W3032017599 @default.
- W4283713636 cites W3033847829 @default.
- W4283713636 cites W3034949062 @default.
- W4283713636 cites W3036259678 @default.
- W4283713636 cites W3036396565 @default.
- W4283713636 cites W3037163353 @default.
- W4283713636 cites W3039828206 @default.
- W4283713636 cites W3040299034 @default.
- W4283713636 cites W3061808290 @default.
- W4283713636 cites W3177898079 @default.
- W4283713636 cites W3201209623 @default.
- W4283713636 cites W3207022909 @default.
- W4283713636 doi "https://doi.org/10.1155/2022/3180742" @default.
- W4283713636 hasPublicationYear "2022" @default.
- W4283713636 type Work @default.
- W4283713636 citedByCount "1" @default.
- W4283713636 countsByYear W42837136362023 @default.
- W4283713636 crossrefType "journal-article" @default.
- W4283713636 hasAuthorship W4283713636A5012433208 @default.
- W4283713636 hasAuthorship W4283713636A5027454208 @default.
- W4283713636 hasAuthorship W4283713636A5038409745 @default.
- W4283713636 hasAuthorship W4283713636A5057090641 @default.
- W4283713636 hasAuthorship W4283713636A5069053230 @default.
- W4283713636 hasAuthorship W4283713636A5082675058 @default.
- W4283713636 hasBestOaLocation W42837136361 @default.
- W4283713636 hasConcept C11413529 @default.
- W4283713636 hasConcept C119857082 @default.
- W4283713636 hasConcept C121332964 @default.
- W4283713636 hasConcept C124101348 @default.
- W4283713636 hasConcept C142724271 @default.
- W4283713636 hasConcept C151406439 @default.
- W4283713636 hasConcept C154945302 @default.
- W4283713636 hasConcept C158622935 @default.
- W4283713636 hasConcept C178009071 @default.
- W4283713636 hasConcept C2524010 @default.
- W4283713636 hasConcept C2779134260 @default.
- W4283713636 hasConcept C3008058167 @default.
- W4283713636 hasConcept C33923547 @default.
- W4283713636 hasConcept C41008148 @default.
- W4283713636 hasConcept C524204448 @default.
- W4283713636 hasConcept C62520636 @default.
- W4283713636 hasConcept C71924100 @default.
- W4283713636 hasConceptScore W4283713636C11413529 @default.
- W4283713636 hasConceptScore W4283713636C119857082 @default.
- W4283713636 hasConceptScore W4283713636C121332964 @default.
- W4283713636 hasConceptScore W4283713636C124101348 @default.
- W4283713636 hasConceptScore W4283713636C142724271 @default.
- W4283713636 hasConceptScore W4283713636C151406439 @default.
- W4283713636 hasConceptScore W4283713636C154945302 @default.
- W4283713636 hasConceptScore W4283713636C158622935 @default.
- W4283713636 hasConceptScore W4283713636C178009071 @default.
- W4283713636 hasConceptScore W4283713636C2524010 @default.
- W4283713636 hasConceptScore W4283713636C2779134260 @default.
- W4283713636 hasConceptScore W4283713636C3008058167 @default.
- W4283713636 hasConceptScore W4283713636C33923547 @default.
- W4283713636 hasConceptScore W4283713636C41008148 @default.
- W4283713636 hasConceptScore W4283713636C524204448 @default.
- W4283713636 hasConceptScore W4283713636C62520636 @default.
- W4283713636 hasConceptScore W4283713636C71924100 @default.
- W4283713636 hasLocation W42837136361 @default.
- W4283713636 hasOpenAccess W4283713636 @default.
- W4283713636 hasPrimaryLocation W42837136361 @default.
- W4283713636 hasRelatedWork W2961085424 @default.
- W4283713636 hasRelatedWork W3046775127 @default.
- W4283713636 hasRelatedWork W3170094116 @default.
- W4283713636 hasRelatedWork W4205958290 @default.
- W4283713636 hasRelatedWork W4285260836 @default.
- W4283713636 hasRelatedWork W4286629047 @default.
- W4283713636 hasRelatedWork W4306321456 @default.
- W4283713636 hasRelatedWork W4306674287 @default.
- W4283713636 hasRelatedWork W4386462264 @default.
- W4283713636 hasRelatedWork W4224009465 @default.
- W4283713636 hasVolume "2022" @default.
- W4283713636 isParatext "false" @default.
- W4283713636 isRetracted "false" @default.