Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283719411> ?p ?o ?g. }
- W4283719411 endingPage "210" @default.
- W4283719411 startingPage "194" @default.
- W4283719411 abstract "Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean engineering, various studies have been conducted to predict dependent variables such as wave parameters, tides, storm surges, design parameters, and shoreline fluctuations. Herein, we introduce and describe the application trend of machine learning models in coastal and ocean engineering. Based on the results of various studies, machine learning models are an effective alternative to approaches involving data requirements, time-consuming fluid dynamics, and numerical models. In addition, machine learning can be successfully applied for solving various problems in coastal and ocean engineering. However, to achieve accurate predictions, model development should be conducted in addition to data preprocessing and cost calculation. Furthermore, applicability to various systems and quantifiable evaluations of uncertainty should be considered." @default.
- W4283719411 created "2022-07-01" @default.
- W4283719411 creator A5075448298 @default.
- W4283719411 creator A5080131417 @default.
- W4283719411 date "2022-06-30" @default.
- W4283719411 modified "2023-10-02" @default.
- W4283719411 title "Review on Applications of Machine Learning in Coastal and Ocean Engineering" @default.
- W4283719411 cites W1979621528 @default.
- W4283719411 cites W1980452595 @default.
- W4283719411 cites W1995631682 @default.
- W4283719411 cites W2005941986 @default.
- W4283719411 cites W2006368595 @default.
- W4283719411 cites W2009488825 @default.
- W4283719411 cites W2041282362 @default.
- W4283719411 cites W2053313262 @default.
- W4283719411 cites W2071747709 @default.
- W4283719411 cites W2087347434 @default.
- W4283719411 cites W2112442192 @default.
- W4283719411 cites W2136653283 @default.
- W4283719411 cites W2146235859 @default.
- W4283719411 cites W2166754846 @default.
- W4283719411 cites W2169046426 @default.
- W4283719411 cites W2216769207 @default.
- W4283719411 cites W2230415638 @default.
- W4283719411 cites W2472285193 @default.
- W4283719411 cites W2516067267 @default.
- W4283719411 cites W2524353561 @default.
- W4283719411 cites W2556118970 @default.
- W4283719411 cites W2597112410 @default.
- W4283719411 cites W2603828441 @default.
- W4283719411 cites W2761543327 @default.
- W4283719411 cites W2776216279 @default.
- W4283719411 cites W2807042118 @default.
- W4283719411 cites W2808995650 @default.
- W4283719411 cites W2897299866 @default.
- W4283719411 cites W2917635009 @default.
- W4283719411 cites W2942440036 @default.
- W4283719411 cites W2963098640 @default.
- W4283719411 cites W2977328464 @default.
- W4283719411 cites W2977679837 @default.
- W4283719411 cites W3004760715 @default.
- W4283719411 cites W3015138342 @default.
- W4283719411 cites W3033057065 @default.
- W4283719411 cites W3035740221 @default.
- W4283719411 cites W3035926446 @default.
- W4283719411 cites W3082061726 @default.
- W4283719411 cites W3112792461 @default.
- W4283719411 cites W3119388184 @default.
- W4283719411 cites W3120060359 @default.
- W4283719411 cites W3122333722 @default.
- W4283719411 cites W3155045454 @default.
- W4283719411 cites W3159065393 @default.
- W4283719411 cites W3195589818 @default.
- W4283719411 cites W3196384719 @default.
- W4283719411 cites W379802210 @default.
- W4283719411 cites W4200581850 @default.
- W4283719411 doi "https://doi.org/10.26748/ksoe.2022.007" @default.
- W4283719411 hasPublicationYear "2022" @default.
- W4283719411 type Work @default.
- W4283719411 citedByCount "8" @default.
- W4283719411 countsByYear W42837194112022 @default.
- W4283719411 countsByYear W42837194112023 @default.
- W4283719411 crossrefType "journal-article" @default.
- W4283719411 hasAuthorship W4283719411A5075448298 @default.
- W4283719411 hasAuthorship W4283719411A5080131417 @default.
- W4283719411 hasBestOaLocation W42837194111 @default.
- W4283719411 hasConcept C10551718 @default.
- W4283719411 hasConcept C111368507 @default.
- W4283719411 hasConcept C119857082 @default.
- W4283719411 hasConcept C127313418 @default.
- W4283719411 hasConcept C152382732 @default.
- W4283719411 hasConcept C154945302 @default.
- W4283719411 hasConcept C2777554443 @default.
- W4283719411 hasConcept C34736171 @default.
- W4283719411 hasConcept C41008148 @default.
- W4283719411 hasConceptScore W4283719411C10551718 @default.
- W4283719411 hasConceptScore W4283719411C111368507 @default.
- W4283719411 hasConceptScore W4283719411C119857082 @default.
- W4283719411 hasConceptScore W4283719411C127313418 @default.
- W4283719411 hasConceptScore W4283719411C152382732 @default.
- W4283719411 hasConceptScore W4283719411C154945302 @default.
- W4283719411 hasConceptScore W4283719411C2777554443 @default.
- W4283719411 hasConceptScore W4283719411C34736171 @default.
- W4283719411 hasConceptScore W4283719411C41008148 @default.
- W4283719411 hasFunder F4320322120 @default.
- W4283719411 hasIssue "3" @default.
- W4283719411 hasLocation W42837194111 @default.
- W4283719411 hasLocation W42837194112 @default.
- W4283719411 hasOpenAccess W4283719411 @default.
- W4283719411 hasPrimaryLocation W42837194111 @default.
- W4283719411 hasRelatedWork W1986684738 @default.
- W4283719411 hasRelatedWork W2314172987 @default.
- W4283719411 hasRelatedWork W2382928216 @default.
- W4283719411 hasRelatedWork W2517235427 @default.
- W4283719411 hasRelatedWork W2592356053 @default.
- W4283719411 hasRelatedWork W2889453578 @default.
- W4283719411 hasRelatedWork W3194157648 @default.
- W4283719411 hasRelatedWork W4205251916 @default.