Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283721125> ?p ?o ?g. }
- W4283721125 endingPage "3172" @default.
- W4283721125 startingPage "3154" @default.
- W4283721125 abstract "The visual system of a robot has different requirements depending on the application: it may require high accuracy or reliability, be constrained by limited resources, or need fast adaptation to dynamically changing environments. In this article, we focus on the instance segmentation task and provide a comprehensive study of different techniques that allow adapting an object segmentation model in the presence of novel objects or different domains. We propose a pipeline for fast instance segmentation learning designed for robotic applications where data come in stream. It is based on an hybrid method leveraging on a pre-trained convolutional neural network for feature extraction and fast-to-train Kernel-based classifiers. We also propose a training protocol that allows to shorten the training time by performing feature extraction during the data acquisition. We benchmark the proposed pipeline on two robotics datasets and we deploy it on a real robot, i.e., the iCub humanoid. To this aim, we adapt our method to an incremental setting in which novel objects are learned online by the robot. The code to reproduce the experiments is publicly available on GitHub. <xref ref-type=fn rid=fn1 xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><sup>1</sup></xref> <fn id=fn1 xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><label><sup>1</sup></label> [Online]. Available: <uri>https://github.com/hsp-iit/online-detection</uri> </fn>" @default.
- W4283721125 created "2022-07-01" @default.
- W4283721125 creator A5009034971 @default.
- W4283721125 creator A5012621119 @default.
- W4283721125 creator A5014399020 @default.
- W4283721125 creator A5031347089 @default.
- W4283721125 creator A5048446378 @default.
- W4283721125 creator A5061220999 @default.
- W4283721125 date "2022-10-01" @default.
- W4283721125 modified "2023-10-17" @default.
- W4283721125 title "Learn Fast, Segment Well: Fast Object Segmentation Learning on the iCub Robot" @default.
- W4283721125 cites W1505952289 @default.
- W4283721125 cites W2031489346 @default.
- W4283721125 cites W2100119371 @default.
- W4283721125 cites W2102605133 @default.
- W4283721125 cites W2161222115 @default.
- W4283721125 cites W2194775991 @default.
- W4283721125 cites W2317851288 @default.
- W4283721125 cites W2322480645 @default.
- W4283721125 cites W2557889580 @default.
- W4283721125 cites W2558156561 @default.
- W4283721125 cites W2565639579 @default.
- W4283721125 cites W2593463620 @default.
- W4283721125 cites W2898125812 @default.
- W4283721125 cites W2920326761 @default.
- W4283721125 cites W2962791145 @default.
- W4283721125 cites W2962884963 @default.
- W4283721125 cites W2962966271 @default.
- W4283721125 cites W2963150697 @default.
- W4283721125 cites W2963188159 @default.
- W4283721125 cites W2963275963 @default.
- W4283721125 cites W2963328456 @default.
- W4283721125 cites W2963351448 @default.
- W4283721125 cites W2963732700 @default.
- W4283721125 cites W2963857746 @default.
- W4283721125 cites W2966885779 @default.
- W4283721125 cites W2967199722 @default.
- W4283721125 cites W2967977974 @default.
- W4283721125 cites W2981537222 @default.
- W4283721125 cites W2981793666 @default.
- W4283721125 cites W2982161360 @default.
- W4283721125 cites W2982770724 @default.
- W4283721125 cites W2989706229 @default.
- W4283721125 cites W2993182889 @default.
- W4283721125 cites W3002888610 @default.
- W4283721125 cites W3003224579 @default.
- W4283721125 cites W3011986058 @default.
- W4283721125 cites W3034479523 @default.
- W4283721125 cites W3034681942 @default.
- W4283721125 cites W3034971973 @default.
- W4283721125 cites W3035513921 @default.
- W4283721125 cites W3035709993 @default.
- W4283721125 cites W3091967103 @default.
- W4283721125 cites W3137905681 @default.
- W4283721125 cites W3205239412 @default.
- W4283721125 cites W639708223 @default.
- W4283721125 doi "https://doi.org/10.1109/tro.2022.3164331" @default.
- W4283721125 hasPublicationYear "2022" @default.
- W4283721125 type Work @default.
- W4283721125 citedByCount "0" @default.
- W4283721125 crossrefType "journal-article" @default.
- W4283721125 hasAuthorship W4283721125A5009034971 @default.
- W4283721125 hasAuthorship W4283721125A5012621119 @default.
- W4283721125 hasAuthorship W4283721125A5014399020 @default.
- W4283721125 hasAuthorship W4283721125A5031347089 @default.
- W4283721125 hasAuthorship W4283721125A5048446378 @default.
- W4283721125 hasAuthorship W4283721125A5061220999 @default.
- W4283721125 hasBestOaLocation W42837211251 @default.
- W4283721125 hasConcept C111151474 @default.
- W4283721125 hasConcept C119857082 @default.
- W4283721125 hasConcept C13280743 @default.
- W4283721125 hasConcept C138885662 @default.
- W4283721125 hasConcept C154945302 @default.
- W4283721125 hasConcept C185798385 @default.
- W4283721125 hasConcept C199360897 @default.
- W4283721125 hasConcept C205649164 @default.
- W4283721125 hasConcept C2776401178 @default.
- W4283721125 hasConcept C2781238097 @default.
- W4283721125 hasConcept C31972630 @default.
- W4283721125 hasConcept C34413123 @default.
- W4283721125 hasConcept C41008148 @default.
- W4283721125 hasConcept C41895202 @default.
- W4283721125 hasConcept C43521106 @default.
- W4283721125 hasConcept C52622490 @default.
- W4283721125 hasConcept C60692881 @default.
- W4283721125 hasConcept C81363708 @default.
- W4283721125 hasConcept C89600930 @default.
- W4283721125 hasConcept C90509273 @default.
- W4283721125 hasConceptScore W4283721125C111151474 @default.
- W4283721125 hasConceptScore W4283721125C119857082 @default.
- W4283721125 hasConceptScore W4283721125C13280743 @default.
- W4283721125 hasConceptScore W4283721125C138885662 @default.
- W4283721125 hasConceptScore W4283721125C154945302 @default.
- W4283721125 hasConceptScore W4283721125C185798385 @default.
- W4283721125 hasConceptScore W4283721125C199360897 @default.
- W4283721125 hasConceptScore W4283721125C205649164 @default.
- W4283721125 hasConceptScore W4283721125C2776401178 @default.
- W4283721125 hasConceptScore W4283721125C2781238097 @default.