Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283721278> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4283721278 endingPage "105183" @default.
- W4283721278 startingPage "105183" @default.
- W4283721278 abstract "This paper proposes an efficient data-driven framework for estimating and forecasting the state of health (SOH) of Lithium-ion (Li-ion) batteries. The proposed framework is established upon a deep neural network (DNN) model, knowledge transfer asset, and autoregressive integrated moving average (ARIMA) forecasting model. The knowledge transfer property reduces the required data for training the model and hence the approach becomes fast and good fit for forecasting the SOH of Li-ion batteries. Among various possibilities, the most efficient training features are picked by Pearson correlation coefficient and least absolute shrinkage and selection operator (LASSO) regression. To suppress existing noises, Savitzky-Golay filter is applied to the signals. The proposed framework allows to use a limited portion of the dataset (about 25 %) for training phase and guarantees high accuracy (almost 96 %) of estimation according to coefficient of determination. Mean squared error (MSE) of the estimations is 0.00075 which is small enough to trust on results. MSE of the model not only during training via 25 % of data is measured, but also after training by 20 % and 30 % of dataset is calculated as well. Training by 20 % of dataset results in a great downfall in the model performance with a 26.6 % rise in the MSE value. Surprisingly, training the model with 30 % portion of the dataset does not add any noticeable accuracy to the model. This study confirms that the transfer learning property and DNN model combination could achieve a dramatic reduction of the dataset portion for training purpose." @default.
- W4283721278 created "2022-07-01" @default.
- W4283721278 creator A5044159957 @default.
- W4283721278 creator A5065735797 @default.
- W4283721278 creator A5081291020 @default.
- W4283721278 date "2022-09-01" @default.
- W4283721278 modified "2023-10-14" @default.
- W4283721278 title "Knowledge transfer-oriented deep neural network framework for estimation and forecasting the state of health of the Lithium-ion batteries" @default.
- W4283721278 cites W1827495041 @default.
- W4283721278 cites W2018636632 @default.
- W4283721278 cites W2058845438 @default.
- W4283721278 cites W2062167409 @default.
- W4283721278 cites W2167503549 @default.
- W4283721278 cites W2767663538 @default.
- W4283721278 cites W2809318506 @default.
- W4283721278 cites W2809946251 @default.
- W4283721278 cites W2887597614 @default.
- W4283721278 cites W2894598517 @default.
- W4283721278 cites W2902107055 @default.
- W4283721278 cites W2903897327 @default.
- W4283721278 cites W2944920662 @default.
- W4283721278 cites W2961951330 @default.
- W4283721278 cites W2975971594 @default.
- W4283721278 cites W2989808303 @default.
- W4283721278 cites W2996610370 @default.
- W4283721278 cites W3032750139 @default.
- W4283721278 cites W3035894202 @default.
- W4283721278 cites W3038027436 @default.
- W4283721278 cites W3043022390 @default.
- W4283721278 cites W3046686579 @default.
- W4283721278 cites W3092215607 @default.
- W4283721278 cites W3108141022 @default.
- W4283721278 cites W3161259087 @default.
- W4283721278 cites W3210929184 @default.
- W4283721278 cites W3216209447 @default.
- W4283721278 cites W4252208101 @default.
- W4283721278 doi "https://doi.org/10.1016/j.est.2022.105183" @default.
- W4283721278 hasPublicationYear "2022" @default.
- W4283721278 type Work @default.
- W4283721278 citedByCount "4" @default.
- W4283721278 countsByYear W42837212782023 @default.
- W4283721278 crossrefType "journal-article" @default.
- W4283721278 hasAuthorship W4283721278A5044159957 @default.
- W4283721278 hasAuthorship W4283721278A5065735797 @default.
- W4283721278 hasAuthorship W4283721278A5081291020 @default.
- W4283721278 hasBestOaLocation W42837212782 @default.
- W4283721278 hasConcept C105795698 @default.
- W4283721278 hasConcept C119857082 @default.
- W4283721278 hasConcept C124101348 @default.
- W4283721278 hasConcept C139945424 @default.
- W4283721278 hasConcept C150899416 @default.
- W4283721278 hasConcept C151406439 @default.
- W4283721278 hasConcept C154945302 @default.
- W4283721278 hasConcept C24338571 @default.
- W4283721278 hasConcept C33923547 @default.
- W4283721278 hasConcept C41008148 @default.
- W4283721278 hasConcept C50644808 @default.
- W4283721278 hasConceptScore W4283721278C105795698 @default.
- W4283721278 hasConceptScore W4283721278C119857082 @default.
- W4283721278 hasConceptScore W4283721278C124101348 @default.
- W4283721278 hasConceptScore W4283721278C139945424 @default.
- W4283721278 hasConceptScore W4283721278C150899416 @default.
- W4283721278 hasConceptScore W4283721278C151406439 @default.
- W4283721278 hasConceptScore W4283721278C154945302 @default.
- W4283721278 hasConceptScore W4283721278C24338571 @default.
- W4283721278 hasConceptScore W4283721278C33923547 @default.
- W4283721278 hasConceptScore W4283721278C41008148 @default.
- W4283721278 hasConceptScore W4283721278C50644808 @default.
- W4283721278 hasLocation W42837212781 @default.
- W4283721278 hasLocation W42837212782 @default.
- W4283721278 hasOpenAccess W4283721278 @default.
- W4283721278 hasPrimaryLocation W42837212781 @default.
- W4283721278 hasRelatedWork W1509694164 @default.
- W4283721278 hasRelatedWork W2351712633 @default.
- W4283721278 hasRelatedWork W2380590035 @default.
- W4283721278 hasRelatedWork W2971401309 @default.
- W4283721278 hasRelatedWork W3080406149 @default.
- W4283721278 hasRelatedWork W3135881084 @default.
- W4283721278 hasRelatedWork W3216381689 @default.
- W4283721278 hasRelatedWork W4224133501 @default.
- W4283721278 hasRelatedWork W4285321763 @default.
- W4283721278 hasRelatedWork W4285509495 @default.
- W4283721278 hasVolume "53" @default.
- W4283721278 isParatext "false" @default.
- W4283721278 isRetracted "false" @default.
- W4283721278 workType "article" @default.