Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283722104> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4283722104 abstract "In this study, the development of electric motor design optimization methods and algorithms for electric vehicles, which have become widespread as a result of energy policies, is discussed. The rapidly increasing need for micro transportation within the scope of small cities has increased the interest in short-range transportation vehicles such as electric bicycles and electric scooters. Therefore, an electric scooter model is considered and the desired motor requirements are determined by analyzing its dynamic model. Then, IPM topologies are investigated and the appropriate topology is decided. IPM design parameters are dealt with in the ANSYS RMXprt environment, and all design combinations by selecting the appropriate test matrix in Taguchi's experiment design method are modeled in ANSYS RMXprt and logged in the appropriate file format together with the obtained results. The motor design models of all experiments are saved as the. png format in the aspect format to be determined. Then, the labeled pictures with the obtained results in the experimental design are trained in MATLAB on a neural network model with appropriate input and output. Thereafter, the trained neural network derives the appropriate motor geometry in terms of the design requirements. The derived motor geometry is converted into a 2D technical drawing format with the help of a package program (Img2CAD) and uploaded to the ANSYS Maxwell environment. To assess the motor performance are performed in ANSYS Maxwell. The proposed methodology shows that the results of parameter estimation and geometry generation in solution space with the trained neural network give sufficient performance." @default.
- W4283722104 created "2022-07-01" @default.
- W4283722104 creator A5014065169 @default.
- W4283722104 creator A5046661493 @default.
- W4283722104 creator A5077394955 @default.
- W4283722104 date "2022-05-17" @default.
- W4283722104 modified "2023-09-25" @default.
- W4283722104 title "Neural Network Approach for E-Motor Development" @default.
- W4283722104 cites W1485286033 @default.
- W4283722104 cites W1966845491 @default.
- W4283722104 cites W2024918515 @default.
- W4283722104 cites W2034144917 @default.
- W4283722104 cites W2037600830 @default.
- W4283722104 cites W2053914269 @default.
- W4283722104 cites W2103633644 @default.
- W4283722104 cites W2122385763 @default.
- W4283722104 cites W2162039043 @default.
- W4283722104 cites W2498870152 @default.
- W4283722104 cites W2789876780 @default.
- W4283722104 cites W2884734315 @default.
- W4283722104 cites W2912603971 @default.
- W4283722104 cites W2999650510 @default.
- W4283722104 cites W3040450703 @default.
- W4283722104 cites W3132839802 @default.
- W4283722104 cites W3179069671 @default.
- W4283722104 doi "https://doi.org/10.1109/codit55151.2022.9804105" @default.
- W4283722104 hasPublicationYear "2022" @default.
- W4283722104 type Work @default.
- W4283722104 citedByCount "0" @default.
- W4283722104 crossrefType "proceedings-article" @default.
- W4283722104 hasAuthorship W4283722104A5014065169 @default.
- W4283722104 hasAuthorship W4283722104A5046661493 @default.
- W4283722104 hasAuthorship W4283722104A5077394955 @default.
- W4283722104 hasConcept C111919701 @default.
- W4283722104 hasConcept C119599485 @default.
- W4283722104 hasConcept C119857082 @default.
- W4283722104 hasConcept C127413603 @default.
- W4283722104 hasConcept C133731056 @default.
- W4283722104 hasConcept C146978453 @default.
- W4283722104 hasConcept C154945302 @default.
- W4283722104 hasConcept C176871988 @default.
- W4283722104 hasConcept C184720557 @default.
- W4283722104 hasConcept C199360897 @default.
- W4283722104 hasConcept C199845137 @default.
- W4283722104 hasConcept C204323151 @default.
- W4283722104 hasConcept C2778012447 @default.
- W4283722104 hasConcept C2780365114 @default.
- W4283722104 hasConcept C41008148 @default.
- W4283722104 hasConcept C50644808 @default.
- W4283722104 hasConcept C78519656 @default.
- W4283722104 hasConcept C83469408 @default.
- W4283722104 hasConceptScore W4283722104C111919701 @default.
- W4283722104 hasConceptScore W4283722104C119599485 @default.
- W4283722104 hasConceptScore W4283722104C119857082 @default.
- W4283722104 hasConceptScore W4283722104C127413603 @default.
- W4283722104 hasConceptScore W4283722104C133731056 @default.
- W4283722104 hasConceptScore W4283722104C146978453 @default.
- W4283722104 hasConceptScore W4283722104C154945302 @default.
- W4283722104 hasConceptScore W4283722104C176871988 @default.
- W4283722104 hasConceptScore W4283722104C184720557 @default.
- W4283722104 hasConceptScore W4283722104C199360897 @default.
- W4283722104 hasConceptScore W4283722104C199845137 @default.
- W4283722104 hasConceptScore W4283722104C204323151 @default.
- W4283722104 hasConceptScore W4283722104C2778012447 @default.
- W4283722104 hasConceptScore W4283722104C2780365114 @default.
- W4283722104 hasConceptScore W4283722104C41008148 @default.
- W4283722104 hasConceptScore W4283722104C50644808 @default.
- W4283722104 hasConceptScore W4283722104C78519656 @default.
- W4283722104 hasConceptScore W4283722104C83469408 @default.
- W4283722104 hasLocation W42837221041 @default.
- W4283722104 hasOpenAccess W4283722104 @default.
- W4283722104 hasPrimaryLocation W42837221041 @default.
- W4283722104 hasRelatedWork W1998322992 @default.
- W4283722104 hasRelatedWork W2166510624 @default.
- W4283722104 hasRelatedWork W2348880647 @default.
- W4283722104 hasRelatedWork W2354083484 @default.
- W4283722104 hasRelatedWork W2361202863 @default.
- W4283722104 hasRelatedWork W2366886530 @default.
- W4283722104 hasRelatedWork W2394386606 @default.
- W4283722104 hasRelatedWork W2619783970 @default.
- W4283722104 hasRelatedWork W2801327719 @default.
- W4283722104 hasRelatedWork W3156321406 @default.
- W4283722104 isParatext "false" @default.
- W4283722104 isRetracted "false" @default.
- W4283722104 workType "article" @default.