Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283726677> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4283726677 abstract "The visual analysis of the electroencephalogram (EEG) is an expensive and time-consuming task. It can extract only 5% of the information held in the signal. Computer-assisted diagnosis could offer a way to obtain fast and reliable results and significantly reduce inter-and intra-assessor variability. In this document, we will present a tool for automatic analysis of EEG based on artificial neural networks. The proposed method consists in using signal processing and artificial intelligence algorithms to improve the interpretation of the EEG. For this purpose, we have two databases from the Nihon Kohden and Cadwell systems whose files are encrypted. The first step was to develop an application to decrypt and read the files. Thanks to this, the files could be decrypted in a standard format and the signals could be read. After that, we applied our method of automatic interpretation of the EEG. First, we preprocessed the signals using an Notch filter (50 Hz) and a bandpass filter (1–30Hz). Then, we extracted the features in the time-frequency domain based on three elements: the wavelet transform, its means, and its standard deviations. These features represent what we have used as inputs to our neural networks for classification. Our algorithm efficiently interpreted EEG signals with a correct classification rate of 97.9%, a sensitivity of 96.9%, and a specificity of 98.9%. These results have been deployed in an application that allows not only to visualize automatically the signals and the power spectral densities but also to extract the characteristics while displaying the wavelet transform related to the EEG signals of each chain." @default.
- W4283726677 created "2022-07-01" @default.
- W4283726677 creator A5009109847 @default.
- W4283726677 creator A5021942590 @default.
- W4283726677 creator A5034783027 @default.
- W4283726677 creator A5083378306 @default.
- W4283726677 date "2022-05-17" @default.
- W4283726677 modified "2023-09-28" @default.
- W4283726677 title "Electroencephalography signal classification for automatic interpretation of electroencephalogram based on Artificial Intelligence" @default.
- W4283726677 cites W2004718447 @default.
- W4283726677 cites W2058508918 @default.
- W4283726677 cites W2059016985 @default.
- W4283726677 cites W2065454702 @default.
- W4283726677 cites W2077640225 @default.
- W4283726677 cites W2078760541 @default.
- W4283726677 cites W2106706488 @default.
- W4283726677 cites W2107541057 @default.
- W4283726677 cites W2113894235 @default.
- W4283726677 cites W2122923860 @default.
- W4283726677 cites W2292649956 @default.
- W4283726677 cites W2543730216 @default.
- W4283726677 cites W2547005669 @default.
- W4283726677 cites W2598587204 @default.
- W4283726677 cites W2617669016 @default.
- W4283726677 cites W2759483166 @default.
- W4283726677 cites W2784185370 @default.
- W4283726677 cites W2921691756 @default.
- W4283726677 cites W2964267916 @default.
- W4283726677 cites W2988664071 @default.
- W4283726677 cites W3030870789 @default.
- W4283726677 cites W3127960558 @default.
- W4283726677 doi "https://doi.org/10.1109/codit55151.2022.9803951" @default.
- W4283726677 hasPublicationYear "2022" @default.
- W4283726677 type Work @default.
- W4283726677 citedByCount "1" @default.
- W4283726677 countsByYear W42837266772023 @default.
- W4283726677 crossrefType "proceedings-article" @default.
- W4283726677 hasAuthorship W4283726677A5009109847 @default.
- W4283726677 hasAuthorship W4283726677A5021942590 @default.
- W4283726677 hasAuthorship W4283726677A5034783027 @default.
- W4283726677 hasAuthorship W4283726677A5083378306 @default.
- W4283726677 hasConcept C104267543 @default.
- W4283726677 hasConcept C106131492 @default.
- W4283726677 hasConcept C118552586 @default.
- W4283726677 hasConcept C153180895 @default.
- W4283726677 hasConcept C154945302 @default.
- W4283726677 hasConcept C15744967 @default.
- W4283726677 hasConcept C196216189 @default.
- W4283726677 hasConcept C199360897 @default.
- W4283726677 hasConcept C2779843651 @default.
- W4283726677 hasConcept C28490314 @default.
- W4283726677 hasConcept C31972630 @default.
- W4283726677 hasConcept C41008148 @default.
- W4283726677 hasConcept C47432892 @default.
- W4283726677 hasConcept C50644808 @default.
- W4283726677 hasConcept C522805319 @default.
- W4283726677 hasConcept C84462506 @default.
- W4283726677 hasConcept C9390403 @default.
- W4283726677 hasConceptScore W4283726677C104267543 @default.
- W4283726677 hasConceptScore W4283726677C106131492 @default.
- W4283726677 hasConceptScore W4283726677C118552586 @default.
- W4283726677 hasConceptScore W4283726677C153180895 @default.
- W4283726677 hasConceptScore W4283726677C154945302 @default.
- W4283726677 hasConceptScore W4283726677C15744967 @default.
- W4283726677 hasConceptScore W4283726677C196216189 @default.
- W4283726677 hasConceptScore W4283726677C199360897 @default.
- W4283726677 hasConceptScore W4283726677C2779843651 @default.
- W4283726677 hasConceptScore W4283726677C28490314 @default.
- W4283726677 hasConceptScore W4283726677C31972630 @default.
- W4283726677 hasConceptScore W4283726677C41008148 @default.
- W4283726677 hasConceptScore W4283726677C47432892 @default.
- W4283726677 hasConceptScore W4283726677C50644808 @default.
- W4283726677 hasConceptScore W4283726677C522805319 @default.
- W4283726677 hasConceptScore W4283726677C84462506 @default.
- W4283726677 hasConceptScore W4283726677C9390403 @default.
- W4283726677 hasLocation W42837266771 @default.
- W4283726677 hasOpenAccess W4283726677 @default.
- W4283726677 hasPrimaryLocation W42837266771 @default.
- W4283726677 hasRelatedWork W1577789985 @default.
- W4283726677 hasRelatedWork W1585529840 @default.
- W4283726677 hasRelatedWork W1982375519 @default.
- W4283726677 hasRelatedWork W2037328875 @default.
- W4283726677 hasRelatedWork W2163073107 @default.
- W4283726677 hasRelatedWork W2529472141 @default.
- W4283726677 hasRelatedWork W2541950815 @default.
- W4283726677 hasRelatedWork W2545095649 @default.
- W4283726677 hasRelatedWork W2942471066 @default.
- W4283726677 hasRelatedWork W4313203779 @default.
- W4283726677 isParatext "false" @default.
- W4283726677 isRetracted "false" @default.
- W4283726677 workType "article" @default.