Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283727110> ?p ?o ?g. }
- W4283727110 endingPage "6617" @default.
- W4283727110 startingPage "6617" @default.
- W4283727110 abstract "Fifth-generation (5G) and beyond networks are envisioned to serve multiple emerging applications having diverse and strict quality of service (QoS) requirements. To meet ultra-reliable and low latency communication, real-time data processing and massive device connectivity demands of the new services, network slicing and edge computing, are envisioned as key enabling technologies. Network slicing will prioritize virtualized and dedicated logical networks over common physical infrastructure and encourage flexible and scalable networks. On the other hand, edge computing offers storage and computational resources at the edge of networks, hence providing real-time, high-bandwidth, low-latency access to radio network resources. As the integration of two technologies delivers network capabilities more efficiently and effectively, this paper provides a comprehensive study on edge-enabled network slicing frameworks and potential solutions with example use cases. In addition, this article further elaborated on the application of machine learning in edge-sliced networks and discussed some recent works as well as example deployment scenarios. Furthermore, to reveal the benefits of these systems further, a novel framework based on reinforcement learning for controller synchronization in distributed edge sliced networks is proposed." @default.
- W4283727110 created "2022-07-01" @default.
- W4283727110 creator A5019261179 @default.
- W4283727110 creator A5041433223 @default.
- W4283727110 creator A5053065603 @default.
- W4283727110 date "2022-06-29" @default.
- W4283727110 modified "2023-10-17" @default.
- W4283727110 title "Integration of Network Slicing and Machine Learning into Edge Networks for Low-Latency Services in 5G and beyond Systems" @default.
- W4283727110 cites W2343448572 @default.
- W4283727110 cites W2485276051 @default.
- W4283727110 cites W2489939061 @default.
- W4283727110 cites W2754368137 @default.
- W4283727110 cites W2801650642 @default.
- W4283727110 cites W2888878287 @default.
- W4283727110 cites W2899077407 @default.
- W4283727110 cites W2902088224 @default.
- W4283727110 cites W2907546937 @default.
- W4283727110 cites W2922917519 @default.
- W4283727110 cites W2946073848 @default.
- W4283727110 cites W2950406044 @default.
- W4283727110 cites W2954207442 @default.
- W4283727110 cites W2956517125 @default.
- W4283727110 cites W2963035503 @default.
- W4283727110 cites W2963863328 @default.
- W4283727110 cites W2964298328 @default.
- W4283727110 cites W2965894868 @default.
- W4283727110 cites W2969817244 @default.
- W4283727110 cites W2971226509 @default.
- W4283727110 cites W2971329741 @default.
- W4283727110 cites W2971335899 @default.
- W4283727110 cites W2973330276 @default.
- W4283727110 cites W2973449430 @default.
- W4283727110 cites W2979987893 @default.
- W4283727110 cites W2982584952 @default.
- W4283727110 cites W2982605438 @default.
- W4283727110 cites W3006210340 @default.
- W4283727110 cites W3010468393 @default.
- W4283727110 cites W3014771625 @default.
- W4283727110 cites W3023131491 @default.
- W4283727110 cites W3025229338 @default.
- W4283727110 cites W3038454252 @default.
- W4283727110 cites W3042879788 @default.
- W4283727110 cites W3044319949 @default.
- W4283727110 cites W3047336578 @default.
- W4283727110 cites W3049032566 @default.
- W4283727110 cites W3089957928 @default.
- W4283727110 cites W3091784801 @default.
- W4283727110 cites W3096000766 @default.
- W4283727110 cites W3102711066 @default.
- W4283727110 cites W3109491105 @default.
- W4283727110 cites W3116498731 @default.
- W4283727110 cites W3122696093 @default.
- W4283727110 cites W3132526154 @default.
- W4283727110 cites W3136454200 @default.
- W4283727110 cites W3136945935 @default.
- W4283727110 cites W3163231210 @default.
- W4283727110 cites W3180530255 @default.
- W4283727110 cites W3183807957 @default.
- W4283727110 cites W3184140944 @default.
- W4283727110 cites W3190717597 @default.
- W4283727110 cites W3199252442 @default.
- W4283727110 cites W3200941073 @default.
- W4283727110 cites W3207532985 @default.
- W4283727110 cites W4210898152 @default.
- W4283727110 cites W4213356995 @default.
- W4283727110 doi "https://doi.org/10.3390/app12136617" @default.
- W4283727110 hasPublicationYear "2022" @default.
- W4283727110 type Work @default.
- W4283727110 citedByCount "5" @default.
- W4283727110 countsByYear W42837271102022 @default.
- W4283727110 countsByYear W42837271102023 @default.
- W4283727110 crossrefType "journal-article" @default.
- W4283727110 hasAuthorship W4283727110A5019261179 @default.
- W4283727110 hasAuthorship W4283727110A5041433223 @default.
- W4283727110 hasAuthorship W4283727110A5053065603 @default.
- W4283727110 hasBestOaLocation W42837271101 @default.
- W4283727110 hasConcept C111919701 @default.
- W4283727110 hasConcept C120314980 @default.
- W4283727110 hasConcept C136764020 @default.
- W4283727110 hasConcept C138236772 @default.
- W4283727110 hasConcept C162307627 @default.
- W4283727110 hasConcept C2776190703 @default.
- W4283727110 hasConcept C2778456923 @default.
- W4283727110 hasConcept C31258907 @default.
- W4283727110 hasConcept C41008148 @default.
- W4283727110 hasConcept C46637626 @default.
- W4283727110 hasConcept C48044578 @default.
- W4283727110 hasConcept C5119721 @default.
- W4283727110 hasConcept C76155785 @default.
- W4283727110 hasConcept C79974875 @default.
- W4283727110 hasConceptScore W4283727110C111919701 @default.
- W4283727110 hasConceptScore W4283727110C120314980 @default.
- W4283727110 hasConceptScore W4283727110C136764020 @default.
- W4283727110 hasConceptScore W4283727110C138236772 @default.
- W4283727110 hasConceptScore W4283727110C162307627 @default.
- W4283727110 hasConceptScore W4283727110C2776190703 @default.
- W4283727110 hasConceptScore W4283727110C2778456923 @default.
- W4283727110 hasConceptScore W4283727110C31258907 @default.