Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283729150> ?p ?o ?g. }
- W4283729150 endingPage "e0269472" @default.
- W4283729150 startingPage "e0269472" @default.
- W4283729150 abstract "Communication interventions have broadened from dialogical meaning-making, assessment approaches, to remote-controlled interactive objects. Yet, interpretation of the mostly pre-or protosymbolic, distinctive, and idiosyncratic movements of children with intellectual disabilities (IDs) or profound intellectual and multiple disabilities (PIMD) using computer-based assistive technology (AT), machine learning (ML), and environment data (ED: location, weather indices and time) remain insufficiently unexplored. We introduce a novel behavior inference computer-based communication-aid AT system structured on machine learning (ML) framework to interpret the movements of children with PIMD/IDs using ED. To establish a stable system, our study aimed to train, cross-validate (10-fold), test and compare the classification accuracy performance of ML classifiers (eXtreme gradient boosting [XGB], support vector machine [SVM], random forest [RF], and neural network [NN]) on classifying the 676 movements to 2, 3, or 7 behavior outcome classes using our proposed dataset recalibration (adding ED to movement datasets) with or without Boruta feature selection (53 child characteristics and movements, and ED-related features). Natural-child-caregiver-dyadic interactions observed in 105 single-dyad video-recorded (30-hour) sessions targeted caregiver-interpreted facial, body, and limb movements of 20 8-to 16-year-old children with PIMD/IDs and simultaneously app-and-sensor-collected ED. Classification accuracy variances and the influences of and the interaction among recalibrated dataset, feature selection, classifiers, and classes on the pooled classification accuracy rates were evaluated using three-way ANOVA. Results revealed that Boruta and NN-trained dataset in class 2 and the non-Boruta SVM-trained dataset in class 3 had >76% accuracy rates. Statistically significant effects indicating high classification rates (>60%) were found among movement datasets: with ED, non-Boruta, class 3, SVM, RF, and NN. Similar trends (>69%) were found in class 2, NN, Boruta-trained movement dataset with ED, and SVM and RF, and non-Boruta-trained movement dataset with ED in class 3. These results support our hypotheses that adding environment data to movement datasets, selecting important features using Boruta, using NN, SVM and RF classifiers, and classifying movements to 2 and 3 behavior outcomes can provide >73.3% accuracy rates, a promising performance for a stable ML-based behavior inference communication-aid AT system for children with PIMD/IDs." @default.
- W4283729150 created "2022-07-01" @default.
- W4283729150 creator A5004283978 @default.
- W4283729150 creator A5011096184 @default.
- W4283729150 creator A5028810502 @default.
- W4283729150 creator A5037639226 @default.
- W4283729150 creator A5055111051 @default.
- W4283729150 creator A5070494750 @default.
- W4283729150 creator A5085174984 @default.
- W4283729150 creator A5088197867 @default.
- W4283729150 date "2022-06-30" @default.
- W4283729150 modified "2023-09-30" @default.
- W4283729150 title "Machine learning-based classification of the movements of children with profound or severe intellectual or multiple disabilities using environment data features" @default.
- W4283729150 cites W1853289550 @default.
- W4283729150 cites W1875943490 @default.
- W4283729150 cites W1971760847 @default.
- W4283729150 cites W2065340646 @default.
- W4283729150 cites W2096309085 @default.
- W4283729150 cites W2113767122 @default.
- W4283729150 cites W2113965272 @default.
- W4283729150 cites W2118929674 @default.
- W4283729150 cites W2138312306 @default.
- W4283729150 cites W2139937601 @default.
- W4283729150 cites W2160169976 @default.
- W4283729150 cites W2168120139 @default.
- W4283729150 cites W2263602591 @default.
- W4283729150 cites W2338551212 @default.
- W4283729150 cites W2403671527 @default.
- W4283729150 cites W2417355778 @default.
- W4283729150 cites W2559181347 @default.
- W4283729150 cites W2593086047 @default.
- W4283729150 cites W2604153910 @default.
- W4283729150 cites W2611785321 @default.
- W4283729150 cites W2612669613 @default.
- W4283729150 cites W2622599070 @default.
- W4283729150 cites W2749241347 @default.
- W4283729150 cites W2766438525 @default.
- W4283729150 cites W2773015433 @default.
- W4283729150 cites W2774402261 @default.
- W4283729150 cites W2785545635 @default.
- W4283729150 cites W2802838061 @default.
- W4283729150 cites W2889908638 @default.
- W4283729150 cites W2891567266 @default.
- W4283729150 cites W2899468255 @default.
- W4283729150 cites W2902092143 @default.
- W4283729150 cites W2904309898 @default.
- W4283729150 cites W2909568496 @default.
- W4283729150 cites W2941056772 @default.
- W4283729150 cites W2983113363 @default.
- W4283729150 cites W2999759189 @default.
- W4283729150 cites W3011205123 @default.
- W4283729150 cites W3014812306 @default.
- W4283729150 cites W3015231783 @default.
- W4283729150 cites W3019742617 @default.
- W4283729150 cites W3032688588 @default.
- W4283729150 cites W3036519866 @default.
- W4283729150 cites W3043210715 @default.
- W4283729150 cites W3044853528 @default.
- W4283729150 cites W3084498024 @default.
- W4283729150 cites W3128543044 @default.
- W4283729150 cites W3155578757 @default.
- W4283729150 cites W3158842678 @default.
- W4283729150 cites W3163175378 @default.
- W4283729150 cites W3163231844 @default.
- W4283729150 cites W3180256489 @default.
- W4283729150 cites W3197571222 @default.
- W4283729150 cites W4292528167 @default.
- W4283729150 doi "https://doi.org/10.1371/journal.pone.0269472" @default.
- W4283729150 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35771797" @default.
- W4283729150 hasPublicationYear "2022" @default.
- W4283729150 type Work @default.
- W4283729150 citedByCount "0" @default.
- W4283729150 crossrefType "journal-article" @default.
- W4283729150 hasAuthorship W4283729150A5004283978 @default.
- W4283729150 hasAuthorship W4283729150A5011096184 @default.
- W4283729150 hasAuthorship W4283729150A5028810502 @default.
- W4283729150 hasAuthorship W4283729150A5037639226 @default.
- W4283729150 hasAuthorship W4283729150A5055111051 @default.
- W4283729150 hasAuthorship W4283729150A5070494750 @default.
- W4283729150 hasAuthorship W4283729150A5085174984 @default.
- W4283729150 hasAuthorship W4283729150A5088197867 @default.
- W4283729150 hasBestOaLocation W42837291501 @default.
- W4283729150 hasConcept C119857082 @default.
- W4283729150 hasConcept C12267149 @default.
- W4283729150 hasConcept C138885662 @default.
- W4283729150 hasConcept C148483581 @default.
- W4283729150 hasConcept C154945302 @default.
- W4283729150 hasConcept C15744967 @default.
- W4283729150 hasConcept C169258074 @default.
- W4283729150 hasConcept C2776401178 @default.
- W4283729150 hasConcept C41008148 @default.
- W4283729150 hasConcept C41895202 @default.
- W4283729150 hasConceptScore W4283729150C119857082 @default.
- W4283729150 hasConceptScore W4283729150C12267149 @default.
- W4283729150 hasConceptScore W4283729150C138885662 @default.
- W4283729150 hasConceptScore W4283729150C148483581 @default.
- W4283729150 hasConceptScore W4283729150C154945302 @default.
- W4283729150 hasConceptScore W4283729150C15744967 @default.