Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283733013> ?p ?o ?g. }
- W4283733013 endingPage "157048" @default.
- W4283733013 startingPage "157048" @default.
- W4283733013 abstract "The assessment of chemical mixture toxicity is one of the major challenges in ecotoxicology. Chemicals can interact, leading to more or less effects than expected, commonly named synergism and antagonism respectively. The classic ad hoc approach for the assessment of mixture effects is based on dose-response curves at a single time point, and is limited to identifying a mixture interaction but cannot provide predictions for untested exposure durations, nor for scenarios where exposure varies in time. We here propose a new approach using toxicokinetic-toxicodynamic modelling: The General Unified Threshold model of Survival (GUTS) framework, recently extended for mixture toxicity assessment. We designed a dedicated mechanistic interaction module coupled with the GUTS mixture model to i) identify interactions, ii) test hypotheses to identify which chemical is likely responsible for the interaction, and finally iii) simulate and predict the effect of synergistic and antagonistic mixtures. We tested the modelling approach experimentally with two species (Enchytraeus crypticus and Mamestra brassicae) exposed to different potentially synergistic mixtures (composed of: prochloraz, imidacloprid, cypermethrin, azoxystrobin, chlorothalonil, and chlorpyrifos). Furthermore, we also tested the model with previously published experimental data on two other species (Bombus terrestris and Daphnia magna) exposed to pesticide mixtures (clothianidin, propiconazole, dimethoate, imidacloprid and thiacloprid) found to be synergistic or antagonistic with the classic approach. The results showed an accurate simulation of synergistic and antagonistic effects for the different tested species and mixtures. This modelling approach can identify interactions accounting for the entire time of exposure, and not only at one time point as in the classic approach, and provides predictions of the mixture effect for untested mixture exposure scenarios, including those with time-variable mixture composition." @default.
- W4283733013 created "2022-07-01" @default.
- W4283733013 creator A5008827086 @default.
- W4283733013 creator A5022505792 @default.
- W4283733013 creator A5037864474 @default.
- W4283733013 creator A5039479556 @default.
- W4283733013 creator A5043480421 @default.
- W4283733013 creator A5059612530 @default.
- W4283733013 creator A5064170030 @default.
- W4283733013 creator A5073915972 @default.
- W4283733013 creator A5086134506 @default.
- W4283733013 date "2022-10-01" @default.
- W4283733013 modified "2023-09-25" @default.
- W4283733013 title "How to analyse and account for interactions in mixture toxicity with toxicokinetic-toxicodynamic models" @default.
- W4283733013 cites W139186881 @default.
- W4283733013 cites W1965544980 @default.
- W4283733013 cites W1971386983 @default.
- W4283733013 cites W1971553113 @default.
- W4283733013 cites W1976309587 @default.
- W4283733013 cites W1978243258 @default.
- W4283733013 cites W1984096709 @default.
- W4283733013 cites W1997371042 @default.
- W4283733013 cites W1999890726 @default.
- W4283733013 cites W2003903542 @default.
- W4283733013 cites W2012433355 @default.
- W4283733013 cites W2013812653 @default.
- W4283733013 cites W2020579057 @default.
- W4283733013 cites W2026615099 @default.
- W4283733013 cites W2033782126 @default.
- W4283733013 cites W2038198667 @default.
- W4283733013 cites W2044295005 @default.
- W4283733013 cites W2052086694 @default.
- W4283733013 cites W2052522881 @default.
- W4283733013 cites W2057050485 @default.
- W4283733013 cites W2059945739 @default.
- W4283733013 cites W2084961747 @default.
- W4283733013 cites W2085885436 @default.
- W4283733013 cites W2106578604 @default.
- W4283733013 cites W2116985057 @default.
- W4283733013 cites W2118543908 @default.
- W4283733013 cites W2128977831 @default.
- W4283733013 cites W2135370889 @default.
- W4283733013 cites W2143406800 @default.
- W4283733013 cites W2155664391 @default.
- W4283733013 cites W2199313269 @default.
- W4283733013 cites W2207332761 @default.
- W4283733013 cites W2241203115 @default.
- W4283733013 cites W2264327862 @default.
- W4283733013 cites W2318487204 @default.
- W4283733013 cites W2537318681 @default.
- W4283733013 cites W2574947977 @default.
- W4283733013 cites W2586865429 @default.
- W4283733013 cites W2698533999 @default.
- W4283733013 cites W2754152672 @default.
- W4283733013 cites W2754239928 @default.
- W4283733013 cites W2770086359 @default.
- W4283733013 cites W2789755319 @default.
- W4283733013 cites W2789904388 @default.
- W4283733013 cites W2791363490 @default.
- W4283733013 cites W2801780305 @default.
- W4283733013 cites W2804216502 @default.
- W4283733013 cites W2805676114 @default.
- W4283733013 cites W2897225876 @default.
- W4283733013 cites W2904960859 @default.
- W4283733013 cites W2921008350 @default.
- W4283733013 cites W2921491950 @default.
- W4283733013 cites W2993447259 @default.
- W4283733013 cites W3002350232 @default.
- W4283733013 cites W3048153144 @default.
- W4283733013 cites W3082427976 @default.
- W4283733013 cites W3107458312 @default.
- W4283733013 cites W3109838866 @default.
- W4283733013 cites W3121219335 @default.
- W4283733013 cites W3142236758 @default.
- W4283733013 cites W3163840322 @default.
- W4283733013 cites W4206028672 @default.
- W4283733013 cites W4234946320 @default.
- W4283733013 cites W4236102597 @default.
- W4283733013 doi "https://doi.org/10.1016/j.scitotenv.2022.157048" @default.
- W4283733013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35779734" @default.
- W4283733013 hasPublicationYear "2022" @default.
- W4283733013 type Work @default.
- W4283733013 citedByCount "6" @default.
- W4283733013 countsByYear W42837330132022 @default.
- W4283733013 countsByYear W42837330132023 @default.
- W4283733013 crossrefType "journal-article" @default.
- W4283733013 hasAuthorship W4283733013A5008827086 @default.
- W4283733013 hasAuthorship W4283733013A5022505792 @default.
- W4283733013 hasAuthorship W4283733013A5037864474 @default.
- W4283733013 hasAuthorship W4283733013A5039479556 @default.
- W4283733013 hasAuthorship W4283733013A5043480421 @default.
- W4283733013 hasAuthorship W4283733013A5059612530 @default.
- W4283733013 hasAuthorship W4283733013A5064170030 @default.
- W4283733013 hasAuthorship W4283733013A5073915972 @default.
- W4283733013 hasAuthorship W4283733013A5086134506 @default.
- W4283733013 hasBestOaLocation W42837330132 @default.
- W4283733013 hasConcept C115346097 @default.
- W4283733013 hasConcept C161176658 @default.