Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283735509> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4283735509 abstract "Nowadays, the human factor is becoming more decisive in achieving the overall performance of companies and subsequently in improving their competitiveness and their productivity, which makes Human Resources (HR) practices, in particular the performance management, a strategic function of companies.However, the mass of data generated by the HR Information System (HRIS) continues to multiply. Moreover, new external information resources are now available, such as social networks or measurements from physical devices, which constitute a profound digital transformation of HR data and its management. Thus, traditional Information Technology (IT) tools are no longer able to keep up with this growth of HR data in terms of volume, variety, veracity, velocity, and added Value, companies are not able to understand past phenomena such as the causes of non-performance of employees or to anticipate the departure risk of their key skills. Therefore, a big data project is no longer an option, it becomes unavoidable to stay in the race for competitiveness, productivity, and profitability [1].In this study, we establish a model to predict employee’s performance using machine learning algorithms in particular Principal Component Analysis (PCA) for dimensionality reduction and multinomial logistic regression (MLR) for classification. The result of this work represents a decision support model for managers to develop a tailor-made team around the overall strategy of the company, to set up an action plan to anticipate the departure of high performers." @default.
- W4283735509 created "2022-07-01" @default.
- W4283735509 creator A5039254250 @default.
- W4283735509 creator A5072737127 @default.
- W4283735509 creator A5081405010 @default.
- W4283735509 date "2022-05-18" @default.
- W4283735509 modified "2023-09-26" @default.
- W4283735509 title "Towards a new method for classifying employee performance using machine learning algorithms" @default.
- W4283735509 cites W1522547150 @default.
- W4283735509 cites W2051361041 @default.
- W4283735509 cites W2150579376 @default.
- W4283735509 cites W2153947402 @default.
- W4283735509 cites W2752214953 @default.
- W4283735509 cites W2765935887 @default.
- W4283735509 cites W2893898628 @default.
- W4283735509 cites W2908779160 @default.
- W4283735509 cites W3124536214 @default.
- W4283735509 cites W3174353959 @default.
- W4283735509 doi "https://doi.org/10.1109/iscv54655.2022.9806118" @default.
- W4283735509 hasPublicationYear "2022" @default.
- W4283735509 type Work @default.
- W4283735509 citedByCount "0" @default.
- W4283735509 crossrefType "proceedings-article" @default.
- W4283735509 hasAuthorship W4283735509A5039254250 @default.
- W4283735509 hasAuthorship W4283735509A5072737127 @default.
- W4283735509 hasAuthorship W4283735509A5081405010 @default.
- W4283735509 hasConcept C10138342 @default.
- W4283735509 hasConcept C107645774 @default.
- W4283735509 hasConcept C119857082 @default.
- W4283735509 hasConcept C124101348 @default.
- W4283735509 hasConcept C129361004 @default.
- W4283735509 hasConcept C139719470 @default.
- W4283735509 hasConcept C144133560 @default.
- W4283735509 hasConcept C154945302 @default.
- W4283735509 hasConcept C162324750 @default.
- W4283735509 hasConcept C187736073 @default.
- W4283735509 hasConcept C204983608 @default.
- W4283735509 hasConcept C41008148 @default.
- W4283735509 hasConcept C56739046 @default.
- W4283735509 hasConcept C70518039 @default.
- W4283735509 hasConcept C75684735 @default.
- W4283735509 hasConceptScore W4283735509C10138342 @default.
- W4283735509 hasConceptScore W4283735509C107645774 @default.
- W4283735509 hasConceptScore W4283735509C119857082 @default.
- W4283735509 hasConceptScore W4283735509C124101348 @default.
- W4283735509 hasConceptScore W4283735509C129361004 @default.
- W4283735509 hasConceptScore W4283735509C139719470 @default.
- W4283735509 hasConceptScore W4283735509C144133560 @default.
- W4283735509 hasConceptScore W4283735509C154945302 @default.
- W4283735509 hasConceptScore W4283735509C162324750 @default.
- W4283735509 hasConceptScore W4283735509C187736073 @default.
- W4283735509 hasConceptScore W4283735509C204983608 @default.
- W4283735509 hasConceptScore W4283735509C41008148 @default.
- W4283735509 hasConceptScore W4283735509C56739046 @default.
- W4283735509 hasConceptScore W4283735509C70518039 @default.
- W4283735509 hasConceptScore W4283735509C75684735 @default.
- W4283735509 hasLocation W42837355091 @default.
- W4283735509 hasOpenAccess W4283735509 @default.
- W4283735509 hasPrimaryLocation W42837355091 @default.
- W4283735509 hasRelatedWork W1655451199 @default.
- W4283735509 hasRelatedWork W3014300295 @default.
- W4283735509 hasRelatedWork W3116187740 @default.
- W4283735509 hasRelatedWork W3183987844 @default.
- W4283735509 hasRelatedWork W3189515467 @default.
- W4283735509 hasRelatedWork W4283029615 @default.
- W4283735509 hasRelatedWork W4295681619 @default.
- W4283735509 hasRelatedWork W4312393190 @default.
- W4283735509 hasRelatedWork W4316039301 @default.
- W4283735509 hasRelatedWork W4362605344 @default.
- W4283735509 isParatext "false" @default.
- W4283735509 isRetracted "false" @default.
- W4283735509 workType "article" @default.