Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283750135> ?p ?o ?g. }
- W4283750135 endingPage "111612" @default.
- W4283750135 startingPage "111612" @default.
- W4283750135 abstract "Generative adversarial networks (GANs) are deep generative models (GMs) that have recently attracted attention owing to their impressive performance in generating completely novel images, text, music, and speech. Recently, GANs have made interesting progress in designing materials exhibiting desired functionalities, termed ‘inverse materials design’ (IMD). Because, discovering materials can lead to enormous technological progress, it is critical to provide a systematic review of new GAN applications to inversely designing inorganic materials. In this study, various aspects of GAN-based IMD were examined wherein IMD is a primary design process for discovering materials exhibiting desired features (physical properties, chemical formulae, etc.) by implementing constraints or conditions on input data or algorithms. We discussed fundamental materials databases and relevant machine-learning criteria. Furthermore, the comprehensive software tools currently available to materials scientists were presented. Descriptors including the criteria required for training GAN models were also discussed. Finally, we summarized both challenges and future direction for applying GANs to IMD research." @default.
- W4283750135 created "2022-07-02" @default.
- W4283750135 creator A5008743547 @default.
- W4283750135 creator A5047151209 @default.
- W4283750135 creator A5072517173 @default.
- W4283750135 date "2022-10-01" @default.
- W4283750135 modified "2023-10-18" @default.
- W4283750135 title "Recent progress in generative adversarial networks applied to inversely designing inorganic materials: A brief review" @default.
- W4283750135 cites W2015197254 @default.
- W4283750135 cites W2133827549 @default.
- W4283750135 cites W2302501749 @default.
- W4283750135 cites W2313722618 @default.
- W4283750135 cites W2410722695 @default.
- W4283750135 cites W2464725281 @default.
- W4283750135 cites W2490901606 @default.
- W4283750135 cites W2602066138 @default.
- W4283750135 cites W2755577605 @default.
- W4283750135 cites W2766856748 @default.
- W4283750135 cites W2802132828 @default.
- W4283750135 cites W2803333205 @default.
- W4283750135 cites W2804431384 @default.
- W4283750135 cites W2884430236 @default.
- W4283750135 cites W2885770726 @default.
- W4283750135 cites W2891365537 @default.
- W4283750135 cites W2894163667 @default.
- W4283750135 cites W2923537029 @default.
- W4283750135 cites W2929465105 @default.
- W4283750135 cites W2945471252 @default.
- W4283750135 cites W2947134462 @default.
- W4283750135 cites W2949095042 @default.
- W4283750135 cites W2950128007 @default.
- W4283750135 cites W2954289762 @default.
- W4283750135 cites W2962793481 @default.
- W4283750135 cites W2964332384 @default.
- W4283750135 cites W2968923792 @default.
- W4283750135 cites W2969222270 @default.
- W4283750135 cites W2972418846 @default.
- W4283750135 cites W2974675506 @default.
- W4283750135 cites W2976720228 @default.
- W4283750135 cites W2979285519 @default.
- W4283750135 cites W2980221293 @default.
- W4283750135 cites W2982140779 @default.
- W4283750135 cites W2989624650 @default.
- W4283750135 cites W2990198263 @default.
- W4283750135 cites W2991327923 @default.
- W4283750135 cites W2991736596 @default.
- W4283750135 cites W2997100726 @default.
- W4283750135 cites W2999847078 @default.
- W4283750135 cites W3005638299 @default.
- W4283750135 cites W3016719477 @default.
- W4283750135 cites W3026094172 @default.
- W4283750135 cites W3031915703 @default.
- W4283750135 cites W3041603413 @default.
- W4283750135 cites W3044862054 @default.
- W4283750135 cites W3082575732 @default.
- W4283750135 cites W3098269892 @default.
- W4283750135 cites W3101694814 @default.
- W4283750135 cites W3104994718 @default.
- W4283750135 cites W3106153623 @default.
- W4283750135 cites W3107714972 @default.
- W4283750135 cites W3119520457 @default.
- W4283750135 cites W3128103315 @default.
- W4283750135 cites W3132766387 @default.
- W4283750135 cites W3135028703 @default.
- W4283750135 cites W3138791055 @default.
- W4283750135 cites W3159986971 @default.
- W4283750135 cites W3160262531 @default.
- W4283750135 cites W3161810785 @default.
- W4283750135 cites W3165300194 @default.
- W4283750135 cites W3175647889 @default.
- W4283750135 cites W3184847901 @default.
- W4283750135 cites W3192953411 @default.
- W4283750135 cites W3197961953 @default.
- W4283750135 cites W3200583852 @default.
- W4283750135 cites W3200751658 @default.
- W4283750135 cites W3205432578 @default.
- W4283750135 cites W4214653918 @default.
- W4283750135 cites W4220893495 @default.
- W4283750135 cites W4249528159 @default.
- W4283750135 cites W4280604864 @default.
- W4283750135 doi "https://doi.org/10.1016/j.commatsci.2022.111612" @default.
- W4283750135 hasPublicationYear "2022" @default.
- W4283750135 type Work @default.
- W4283750135 citedByCount "4" @default.
- W4283750135 countsByYear W42837501352023 @default.
- W4283750135 crossrefType "journal-article" @default.
- W4283750135 hasAuthorship W4283750135A5008743547 @default.
- W4283750135 hasAuthorship W4283750135A5047151209 @default.
- W4283750135 hasAuthorship W4283750135A5072517173 @default.
- W4283750135 hasConcept C108583219 @default.
- W4283750135 hasConcept C119857082 @default.
- W4283750135 hasConcept C127413603 @default.
- W4283750135 hasConcept C154945302 @default.
- W4283750135 hasConcept C199360897 @default.
- W4283750135 hasConcept C201995342 @default.
- W4283750135 hasConcept C2522767166 @default.
- W4283750135 hasConcept C2988773926 @default.
- W4283750135 hasConcept C37736160 @default.