Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283752694> ?p ?o ?g. }
- W4283752694 endingPage "e0270043" @default.
- W4283752694 startingPage "e0270043" @default.
- W4283752694 abstract "Motivation Single-cell Chromatin ImmunoPrecipitation DNA-Sequencing (scChIP-seq) analysis is challenging due to data sparsity. High degree of sparsity in biological high-throughput single-cell data is generally handled with imputation methods that complete the data, but specific methods for scChIP-seq are lacking. We present SIMPA, a scChIP-seq data imputation method leveraging predictive information within bulk data from the ENCODE project to impute missing protein-DNA interacting regions of target histone marks or transcription factors. Results Imputations using machine learning models trained for each single cell, each ChIP protein target, and each genomic region accurately preserve cell type clustering and improve pathway-related gene identification on real human data. Results on bulk data simulating single cells show that the imputations are single-cell specific as the imputed profiles are closer to the simulated cell than to other cells related to the same ChIP protein target and the same cell type. Simulations also show that 100 input genomic regions are already enough to train single-cell specific models for the imputation of thousands of undetected regions. Furthermore, SIMPA enables the interpretation of machine learning models by revealing interaction sites of a given single cell that are most important for the imputation model trained for a specific genomic region. The corresponding feature importance values derived from promoter-interaction profiles of H3K4me3, an activating histone mark, highly correlate with co-expression of genes that are present within the cell-type specific pathways in 2 real human and mouse datasets. The SIMPA’s interpretable imputation method allows users to gain a deep understanding of individual cells and, consequently, of sparse scChIP-seq datasets. Availability and implementation Our interpretable imputation algorithm was implemented in Python and is available at https://github.com/salbrec/SIMPA ." @default.
- W4283752694 created "2022-07-02" @default.
- W4283752694 creator A5010178662 @default.
- W4283752694 creator A5017375379 @default.
- W4283752694 creator A5055724941 @default.
- W4283752694 creator A5059739194 @default.
- W4283752694 date "2022-07-01" @default.
- W4283752694 modified "2023-10-14" @default.
- W4283752694 title "Single-cell specific and interpretable machine learning models for sparse scChIP-seq data imputation" @default.
- W4283752694 cites W1966716734 @default.
- W4283752694 cites W1971039378 @default.
- W4283752694 cites W2019251848 @default.
- W4283752694 cites W2051224630 @default.
- W4283752694 cites W2198371822 @default.
- W4283752694 cites W2231865019 @default.
- W4283752694 cites W2247766769 @default.
- W4283752694 cites W2259938310 @default.
- W4283752694 cites W2589838901 @default.
- W4283752694 cites W2612550256 @default.
- W4283752694 cites W2782146634 @default.
- W4283752694 cites W2900569176 @default.
- W4283752694 cites W2915985519 @default.
- W4283752694 cites W2944189019 @default.
- W4283752694 cites W2944648259 @default.
- W4283752694 cites W2947608130 @default.
- W4283752694 cites W2950104637 @default.
- W4283752694 cites W2950489610 @default.
- W4283752694 cites W2967923991 @default.
- W4283752694 cites W2968073395 @default.
- W4283752694 cites W2977512847 @default.
- W4283752694 cites W2979464975 @default.
- W4283752694 cites W3003185417 @default.
- W4283752694 cites W3007342241 @default.
- W4283752694 cites W3009560560 @default.
- W4283752694 cites W3012091681 @default.
- W4283752694 cites W3013674494 @default.
- W4283752694 cites W3013690547 @default.
- W4283752694 cites W3020430716 @default.
- W4283752694 cites W3039566339 @default.
- W4283752694 cites W3099848476 @default.
- W4283752694 cites W3107026391 @default.
- W4283752694 cites W3131450268 @default.
- W4283752694 cites W3161309382 @default.
- W4283752694 cites W3208967609 @default.
- W4283752694 cites W4243545763 @default.
- W4283752694 doi "https://doi.org/10.1371/journal.pone.0270043" @default.
- W4283752694 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35776722" @default.
- W4283752694 hasPublicationYear "2022" @default.
- W4283752694 type Work @default.
- W4283752694 citedByCount "2" @default.
- W4283752694 countsByYear W42837526942022 @default.
- W4283752694 countsByYear W42837526942023 @default.
- W4283752694 crossrefType "journal-article" @default.
- W4283752694 hasAuthorship W4283752694A5010178662 @default.
- W4283752694 hasAuthorship W4283752694A5017375379 @default.
- W4283752694 hasAuthorship W4283752694A5055724941 @default.
- W4283752694 hasAuthorship W4283752694A5059739194 @default.
- W4283752694 hasBestOaLocation W42837526941 @default.
- W4283752694 hasConcept C101762097 @default.
- W4283752694 hasConcept C104317684 @default.
- W4283752694 hasConcept C119857082 @default.
- W4283752694 hasConcept C124101348 @default.
- W4283752694 hasConcept C134320426 @default.
- W4283752694 hasConcept C141231307 @default.
- W4283752694 hasConcept C150194340 @default.
- W4283752694 hasConcept C153180895 @default.
- W4283752694 hasConcept C154945302 @default.
- W4283752694 hasConcept C189206191 @default.
- W4283752694 hasConcept C41008148 @default.
- W4283752694 hasConcept C54355233 @default.
- W4283752694 hasConcept C58041806 @default.
- W4283752694 hasConcept C66746571 @default.
- W4283752694 hasConcept C70721500 @default.
- W4283752694 hasConcept C73555534 @default.
- W4283752694 hasConcept C86803240 @default.
- W4283752694 hasConcept C9357733 @default.
- W4283752694 hasConceptScore W4283752694C101762097 @default.
- W4283752694 hasConceptScore W4283752694C104317684 @default.
- W4283752694 hasConceptScore W4283752694C119857082 @default.
- W4283752694 hasConceptScore W4283752694C124101348 @default.
- W4283752694 hasConceptScore W4283752694C134320426 @default.
- W4283752694 hasConceptScore W4283752694C141231307 @default.
- W4283752694 hasConceptScore W4283752694C150194340 @default.
- W4283752694 hasConceptScore W4283752694C153180895 @default.
- W4283752694 hasConceptScore W4283752694C154945302 @default.
- W4283752694 hasConceptScore W4283752694C189206191 @default.
- W4283752694 hasConceptScore W4283752694C41008148 @default.
- W4283752694 hasConceptScore W4283752694C54355233 @default.
- W4283752694 hasConceptScore W4283752694C58041806 @default.
- W4283752694 hasConceptScore W4283752694C66746571 @default.
- W4283752694 hasConceptScore W4283752694C70721500 @default.
- W4283752694 hasConceptScore W4283752694C73555534 @default.
- W4283752694 hasConceptScore W4283752694C86803240 @default.
- W4283752694 hasConceptScore W4283752694C9357733 @default.
- W4283752694 hasIssue "7" @default.
- W4283752694 hasLocation W42837526941 @default.
- W4283752694 hasLocation W42837526942 @default.
- W4283752694 hasLocation W42837526943 @default.