Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283754311> ?p ?o ?g. }
- W4283754311 endingPage "4956" @default.
- W4283754311 startingPage "4956" @default.
- W4283754311 abstract "The gradient vector flow (GVF) model has been widely used in the field of computer image segmentation. In order to achieve better results in image processing, there are many research papers based on the GVF model. However, few models include image structure. In this paper, the smoothness constraint formula of the GVF model is re-expressed in matrix form, and the image knot represented by the Hessian matrix is included in the GVF model. Through the processing of this process, the relevant diffusion partial differential equation has anisotropy. The GVF model based on the Hessian matrix (HBGVF) has many advantages over other relevant GVF methods, such as accurate convergence to various concave surfaces, excellent weak edge retention ability, and so on. The following will prove the advantages of our proposed model through theoretical analysis and various comparative experiments." @default.
- W4283754311 created "2022-07-02" @default.
- W4283754311 creator A5035153981 @default.
- W4283754311 creator A5056533044 @default.
- W4283754311 creator A5058216006 @default.
- W4283754311 creator A5061999808 @default.
- W4283754311 creator A5084624716 @default.
- W4283754311 date "2022-06-30" @default.
- W4283754311 modified "2023-10-09" @default.
- W4283754311 title "Image Segmentation Using Active Contours with Hessian-Based Gradient Vector Flow External Force" @default.
- W4283754311 cites W127809959 @default.
- W4283754311 cites W1672388334 @default.
- W4283754311 cites W1967230889 @default.
- W4283754311 cites W1970800786 @default.
- W4283754311 cites W1978854150 @default.
- W4283754311 cites W1979142949 @default.
- W4283754311 cites W1989135034 @default.
- W4283754311 cites W1992147426 @default.
- W4283754311 cites W2000286185 @default.
- W4283754311 cites W2000662299 @default.
- W4283754311 cites W2007415672 @default.
- W4283754311 cites W2008596080 @default.
- W4283754311 cites W2010162805 @default.
- W4283754311 cites W2012109192 @default.
- W4283754311 cites W2016860730 @default.
- W4283754311 cites W2019393228 @default.
- W4283754311 cites W2025061783 @default.
- W4283754311 cites W2028568556 @default.
- W4283754311 cites W2031544693 @default.
- W4283754311 cites W2033973976 @default.
- W4283754311 cites W2047302517 @default.
- W4283754311 cites W2066225323 @default.
- W4283754311 cites W2073982904 @default.
- W4283754311 cites W2074810557 @default.
- W4283754311 cites W2085982680 @default.
- W4283754311 cites W2098152234 @default.
- W4283754311 cites W2103035876 @default.
- W4283754311 cites W2104095591 @default.
- W4283754311 cites W2104479126 @default.
- W4283754311 cites W2112516182 @default.
- W4283754311 cites W2115836603 @default.
- W4283754311 cites W2116040950 @default.
- W4283754311 cites W2119955383 @default.
- W4283754311 cites W2126801588 @default.
- W4283754311 cites W2127626572 @default.
- W4283754311 cites W2134530836 @default.
- W4283754311 cites W2136893947 @default.
- W4283754311 cites W2138524633 @default.
- W4283754311 cites W2139478903 @default.
- W4283754311 cites W2139613843 @default.
- W4283754311 cites W2142500909 @default.
- W4283754311 cites W2142722911 @default.
- W4283754311 cites W2145803225 @default.
- W4283754311 cites W2146988418 @default.
- W4283754311 cites W2148773932 @default.
- W4283754311 cites W2151958211 @default.
- W4283754311 cites W2154063579 @default.
- W4283754311 cites W2203941287 @default.
- W4283754311 cites W2401732380 @default.
- W4283754311 cites W2423738787 @default.
- W4283754311 cites W2505480117 @default.
- W4283754311 cites W2621852844 @default.
- W4283754311 cites W2773193656 @default.
- W4283754311 cites W2782014884 @default.
- W4283754311 cites W2791244962 @default.
- W4283754311 cites W2794304857 @default.
- W4283754311 cites W2884167811 @default.
- W4283754311 cites W2885724298 @default.
- W4283754311 cites W2898244035 @default.
- W4283754311 cites W2901317832 @default.
- W4283754311 cites W2931569196 @default.
- W4283754311 cites W3013390956 @default.
- W4283754311 cites W3031154432 @default.
- W4283754311 cites W3082560017 @default.
- W4283754311 cites W3101476123 @default.
- W4283754311 cites W3132455321 @default.
- W4283754311 cites W3134356777 @default.
- W4283754311 cites W3163034495 @default.
- W4283754311 cites W3169512507 @default.
- W4283754311 cites W3205156060 @default.
- W4283754311 cites W3211330693 @default.
- W4283754311 cites W4225833008 @default.
- W4283754311 doi "https://doi.org/10.3390/s22134956" @default.
- W4283754311 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35808448" @default.
- W4283754311 hasPublicationYear "2022" @default.
- W4283754311 type Work @default.
- W4283754311 citedByCount "3" @default.
- W4283754311 countsByYear W42837543112023 @default.
- W4283754311 crossrefType "journal-article" @default.
- W4283754311 hasAuthorship W4283754311A5035153981 @default.
- W4283754311 hasAuthorship W4283754311A5056533044 @default.
- W4283754311 hasAuthorship W4283754311A5058216006 @default.
- W4283754311 hasAuthorship W4283754311A5061999808 @default.
- W4283754311 hasAuthorship W4283754311A5084624716 @default.
- W4283754311 hasBestOaLocation W42837543111 @default.
- W4283754311 hasConcept C106487976 @default.
- W4283754311 hasConcept C11413529 @default.
- W4283754311 hasConcept C115961682 @default.