Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283759667> ?p ?o ?g. }
- W4283759667 abstract "Abstract The physical transport process is the bottleneck of the computational efficiency in regional chemical transport modeling. The issue will be worse with the smaller time step due to increased iterations required with finer spatial resolution at scale. Reported surrogates of the transport process are usually unfeasible according to integrated assessment of efficiency promotion, long‐term consistency, and spatial dimensions. This study intended to approximate the three‐dimensional (3‐D) transport process (including advection and diffusion) of a state‐of‐the‐art chemical transport model, that is, Models 3/Community Multiscale Air Quality (CMAQ), via the U‐Net structure of deep learning. Two temporal resolutions of models with 1‐hr and 5‐min were developed. Validation results indicated that single‐step R squared of both models were higher than 0.9, and the lifetime for continuous running was 400 and 1,000 steps for 1‐hr and 5‐min model, respectively. Meanwhile, the computational efficiency can be promoted with the maximum of 164 times for 1‐hr and 14 times for 5‐min resolution on one GPU. The 1‐hr deep learning surrogate could still achieve 12 times acceleration on the same CPU configurations of CMAQ, mainly through the end‐to‐end direct inferring rather than time step iterations. This study preliminarily proves the feasibility of the data‐driven approach in approximating the 3‐D complex transport process of atmospheric pollutants. Furthermore, computational efficiency can be efficiently improved while maintaining consistency and accuracy. Rapid transport simulation of different pollutants with wide concentration range can be expected, which will finally benefit the acceleration of whole chemical transport modeling." @default.
- W4283759667 created "2022-07-02" @default.
- W4283759667 creator A5002324274 @default.
- W4283759667 creator A5017097386 @default.
- W4283759667 creator A5037783063 @default.
- W4283759667 creator A5047905148 @default.
- W4283759667 creator A5071230372 @default.
- W4283759667 creator A5089130879 @default.
- W4283759667 date "2022-07-01" @default.
- W4283759667 modified "2023-10-18" @default.
- W4283759667 title "Approximating Three‐Dimensional (3‐D) Transport of Atmospheric Pollutants via Deep Learning" @default.
- W4283759667 cites W1949793634 @default.
- W4283759667 cites W1969045634 @default.
- W4283759667 cites W1973108554 @default.
- W4283759667 cites W1977175344 @default.
- W4283759667 cites W1991969881 @default.
- W4283759667 cites W2003187631 @default.
- W4283759667 cites W2008641894 @default.
- W4283759667 cites W2009634867 @default.
- W4283759667 cites W2021350270 @default.
- W4283759667 cites W2051647601 @default.
- W4283759667 cites W2121690346 @default.
- W4283759667 cites W2165680013 @default.
- W4283759667 cites W2316012311 @default.
- W4283759667 cites W2767106145 @default.
- W4283759667 cites W2779788985 @default.
- W4283759667 cites W2888796609 @default.
- W4283759667 cites W2891537135 @default.
- W4283759667 cites W2904197844 @default.
- W4283759667 cites W2908821988 @default.
- W4283759667 cites W2962933664 @default.
- W4283759667 cites W3008439211 @default.
- W4283759667 cites W3021399918 @default.
- W4283759667 cites W3127673685 @default.
- W4283759667 cites W3161189163 @default.
- W4283759667 cites W3199491006 @default.
- W4283759667 cites W3211768749 @default.
- W4283759667 cites W4280545149 @default.
- W4283759667 doi "https://doi.org/10.1029/2022ea002338" @default.
- W4283759667 hasPublicationYear "2022" @default.
- W4283759667 type Work @default.
- W4283759667 citedByCount "0" @default.
- W4283759667 crossrefType "journal-article" @default.
- W4283759667 hasAuthorship W4283759667A5002324274 @default.
- W4283759667 hasAuthorship W4283759667A5017097386 @default.
- W4283759667 hasAuthorship W4283759667A5037783063 @default.
- W4283759667 hasAuthorship W4283759667A5047905148 @default.
- W4283759667 hasAuthorship W4283759667A5071230372 @default.
- W4283759667 hasAuthorship W4283759667A5089130879 @default.
- W4283759667 hasBestOaLocation W42837596671 @default.
- W4283759667 hasConcept C111919701 @default.
- W4283759667 hasConcept C11413529 @default.
- W4283759667 hasConcept C121332964 @default.
- W4283759667 hasConcept C126314574 @default.
- W4283759667 hasConcept C149635348 @default.
- W4283759667 hasConcept C153294291 @default.
- W4283759667 hasConcept C154945302 @default.
- W4283759667 hasConcept C2776436953 @default.
- W4283759667 hasConcept C2776845762 @default.
- W4283759667 hasConcept C2780513914 @default.
- W4283759667 hasConcept C39432304 @default.
- W4283759667 hasConcept C41008148 @default.
- W4283759667 hasConcept C5072599 @default.
- W4283759667 hasConcept C69357855 @default.
- W4283759667 hasConcept C97355855 @default.
- W4283759667 hasConcept C98045186 @default.
- W4283759667 hasConceptScore W4283759667C111919701 @default.
- W4283759667 hasConceptScore W4283759667C11413529 @default.
- W4283759667 hasConceptScore W4283759667C121332964 @default.
- W4283759667 hasConceptScore W4283759667C126314574 @default.
- W4283759667 hasConceptScore W4283759667C149635348 @default.
- W4283759667 hasConceptScore W4283759667C153294291 @default.
- W4283759667 hasConceptScore W4283759667C154945302 @default.
- W4283759667 hasConceptScore W4283759667C2776436953 @default.
- W4283759667 hasConceptScore W4283759667C2776845762 @default.
- W4283759667 hasConceptScore W4283759667C2780513914 @default.
- W4283759667 hasConceptScore W4283759667C39432304 @default.
- W4283759667 hasConceptScore W4283759667C41008148 @default.
- W4283759667 hasConceptScore W4283759667C5072599 @default.
- W4283759667 hasConceptScore W4283759667C69357855 @default.
- W4283759667 hasConceptScore W4283759667C97355855 @default.
- W4283759667 hasConceptScore W4283759667C98045186 @default.
- W4283759667 hasFunder F4320321001 @default.
- W4283759667 hasIssue "7" @default.
- W4283759667 hasLocation W42837596671 @default.
- W4283759667 hasOpenAccess W4283759667 @default.
- W4283759667 hasPrimaryLocation W42837596671 @default.
- W4283759667 hasRelatedWork W1662412680 @default.
- W4283759667 hasRelatedWork W2354251581 @default.
- W4283759667 hasRelatedWork W2354605370 @default.
- W4283759667 hasRelatedWork W2357461155 @default.
- W4283759667 hasRelatedWork W2384129116 @default.
- W4283759667 hasRelatedWork W2748952813 @default.
- W4283759667 hasRelatedWork W2792647660 @default.
- W4283759667 hasRelatedWork W2899084033 @default.
- W4283759667 hasRelatedWork W3145924829 @default.
- W4283759667 hasRelatedWork W3159815924 @default.
- W4283759667 hasVolume "9" @default.
- W4283759667 isParatext "false" @default.
- W4283759667 isRetracted "false" @default.