Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283760207> ?p ?o ?g. }
- W4283760207 abstract "Abstract An eXtreme Gradient Boosting (XGBoost) machine learning model is built to predict the electrocaloric (EC) temperature change of a ceramic based on its composition (encoded by Magpie elemental properties), dielectric constant, Curie temperature, and characterization conditions. A dataset of 97 EC ceramics is assembled from the experimental literature. By sampling data from clusters in the feature space, the model can achieve a coefficient of determination of 0.77 and a root mean square error of 0.38 K for the test data. Feature analysis shows that the model captures known physics for effective EC materials. The Magpie features help the model to distinguish between materials, with the elemental electronegativities and ionic charges identified as key features. The model is applied to 66 ferroelectrics whose EC performance has not been characterized. Lead-free candidates with a predicted EC temperature change above 2 K at room temperature and 100 kV/cm are identified." @default.
- W4283760207 created "2022-07-02" @default.
- W4283760207 creator A5000750138 @default.
- W4283760207 creator A5014826801 @default.
- W4283760207 creator A5015780262 @default.
- W4283760207 creator A5039033574 @default.
- W4283760207 date "2022-07-01" @default.
- W4283760207 modified "2023-10-18" @default.
- W4283760207 title "XGBoost model for electrocaloric temperature change prediction in ceramics" @default.
- W4283760207 cites W1540061443 @default.
- W4283760207 cites W1548558986 @default.
- W4283760207 cites W1563159756 @default.
- W4283760207 cites W1623734403 @default.
- W4283760207 cites W1678356000 @default.
- W4283760207 cites W1965502119 @default.
- W4283760207 cites W1968719038 @default.
- W4283760207 cites W1973272574 @default.
- W4283760207 cites W1976492731 @default.
- W4283760207 cites W1978228348 @default.
- W4283760207 cites W1978932168 @default.
- W4283760207 cites W1987301919 @default.
- W4283760207 cites W1991537916 @default.
- W4283760207 cites W1992519871 @default.
- W4283760207 cites W1992985800 @default.
- W4283760207 cites W1994595537 @default.
- W4283760207 cites W1997331091 @default.
- W4283760207 cites W2008990995 @default.
- W4283760207 cites W2016728954 @default.
- W4283760207 cites W2024275681 @default.
- W4283760207 cites W2024713169 @default.
- W4283760207 cites W2027499748 @default.
- W4283760207 cites W2037009864 @default.
- W4283760207 cites W2038115153 @default.
- W4283760207 cites W2045471962 @default.
- W4283760207 cites W2046456063 @default.
- W4283760207 cites W2048586347 @default.
- W4283760207 cites W2049177906 @default.
- W4283760207 cites W2050530783 @default.
- W4283760207 cites W2053642705 @default.
- W4283760207 cites W2055945163 @default.
- W4283760207 cites W2056398731 @default.
- W4283760207 cites W2060420449 @default.
- W4283760207 cites W2060647357 @default.
- W4283760207 cites W2070289379 @default.
- W4283760207 cites W2071261094 @default.
- W4283760207 cites W2076090448 @default.
- W4283760207 cites W2107034469 @default.
- W4283760207 cites W2114937415 @default.
- W4283760207 cites W2127644822 @default.
- W4283760207 cites W2134329894 @default.
- W4283760207 cites W2151399017 @default.
- W4283760207 cites W2165987434 @default.
- W4283760207 cites W2219719001 @default.
- W4283760207 cites W2316705960 @default.
- W4283760207 cites W240612223 @default.
- W4283760207 cites W2415372084 @default.
- W4283760207 cites W2464725281 @default.
- W4283760207 cites W2514816098 @default.
- W4283760207 cites W2555640890 @default.
- W4283760207 cites W2755837508 @default.
- W4283760207 cites W2756116499 @default.
- W4283760207 cites W2801489087 @default.
- W4283760207 cites W2885048850 @default.
- W4283760207 cites W2910092136 @default.
- W4283760207 cites W2917587832 @default.
- W4283760207 cites W2932887411 @default.
- W4283760207 cites W2952673586 @default.
- W4283760207 cites W2963784900 @default.
- W4283760207 cites W3009321917 @default.
- W4283760207 cites W3036490780 @default.
- W4283760207 cites W3036640975 @default.
- W4283760207 cites W3091796514 @default.
- W4283760207 cites W3098905070 @default.
- W4283760207 cites W3102476541 @default.
- W4283760207 cites W3104681382 @default.
- W4283760207 cites W3104941401 @default.
- W4283760207 cites W3107581532 @default.
- W4283760207 cites W3110255429 @default.
- W4283760207 cites W3135819227 @default.
- W4283760207 cites W3163993681 @default.
- W4283760207 cites W3209475752 @default.
- W4283760207 cites W4235294510 @default.
- W4283760207 cites W4249569225 @default.
- W4283760207 doi "https://doi.org/10.1038/s41524-022-00826-3" @default.
- W4283760207 hasPublicationYear "2022" @default.
- W4283760207 type Work @default.
- W4283760207 citedByCount "9" @default.
- W4283760207 countsByYear W42837602072023 @default.
- W4283760207 crossrefType "journal-article" @default.
- W4283760207 hasAuthorship W4283760207A5000750138 @default.
- W4283760207 hasAuthorship W4283760207A5014826801 @default.
- W4283760207 hasAuthorship W4283760207A5015780262 @default.
- W4283760207 hasAuthorship W4283760207A5039033574 @default.
- W4283760207 hasBestOaLocation W42837602071 @default.
- W4283760207 hasConcept C121332964 @default.
- W4283760207 hasConcept C133386390 @default.
- W4283760207 hasConcept C134132462 @default.
- W4283760207 hasConcept C159985019 @default.
- W4283760207 hasConcept C177293861 @default.
- W4283760207 hasConcept C178790620 @default.