Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283760323> ?p ?o ?g. }
- W4283760323 endingPage "364" @default.
- W4283760323 startingPage "355" @default.
- W4283760323 abstract "The aim of the study was to evaluate if artificial neural networks can predict high-grade histopathology results after conisation from risk factors and their combinations in patients undergoing conisation because of pathological changes on uterine cervix.We analysed 1475 patients who had conisation surgery at the University Clinic for Gynaecology and Obstetrics of University Clinical Centre Maribor from 1993-2005. The database in different datasets was arranged to deal with unbalance data and enhance classification performance. Weka open-source software was used for analysis with artificial neural networks. Last Papanicolaou smear (PAP) and risk factors for development of cervical dysplasia and carcinoma were used as input and high-grade dysplasia Yes/No as output result. 10-fold cross validation was used for defining training and holdout set for analysis.Bas eline classification and multiple runs of artificial neural network on various risk factors settings were performed. We achieved 84.19% correct classifications, area under the curve 0.87, kappa 0.64, F-measure 0.884 and Matthews correlation coefficient (MCC) 0.640 in model, where baseline prediction was 69.79%.With artificial neural networks we were able to identify more patients who developed high-grade squamous intraepithelial lesion on final histopathology result of conisation as with baseline prediction. But, characteristics of 1475 patients who had conisation in years 1993-2005 at the University Clinical Centre Maribor did not allow reliable prediction with artificial neural networks for every-day clinical practice." @default.
- W4283760323 created "2022-07-02" @default.
- W4283760323 creator A5001682030 @default.
- W4283760323 creator A5019000061 @default.
- W4283760323 creator A5051921971 @default.
- W4283760323 creator A5054567845 @default.
- W4283760323 date "2022-08-14" @default.
- W4283760323 modified "2023-09-25" @default.
- W4283760323 title "Identification of women with high grade histopathology results after conisation by artificial neural networks" @default.
- W4283760323 cites W1498921953 @default.
- W4283760323 cites W1764705709 @default.
- W4283760323 cites W1966716734 @default.
- W4283760323 cites W1968354595 @default.
- W4283760323 cites W1987045012 @default.
- W4283760323 cites W1989480104 @default.
- W4283760323 cites W1992335116 @default.
- W4283760323 cites W1997777628 @default.
- W4283760323 cites W2005918389 @default.
- W4283760323 cites W2006859891 @default.
- W4283760323 cites W2024492396 @default.
- W4283760323 cites W2073934456 @default.
- W4283760323 cites W2083780116 @default.
- W4283760323 cites W2098765233 @default.
- W4283760323 cites W2106479238 @default.
- W4283760323 cites W2142116340 @default.
- W4283760323 cites W2148143831 @default.
- W4283760323 cites W2161742085 @default.
- W4283760323 cites W2166584344 @default.
- W4283760323 cites W2193118562 @default.
- W4283760323 cites W2330109037 @default.
- W4283760323 cites W2584997055 @default.
- W4283760323 cites W2735572195 @default.
- W4283760323 cites W2744692634 @default.
- W4283760323 cites W2772038533 @default.
- W4283760323 cites W2883260705 @default.
- W4283760323 cites W2888052930 @default.
- W4283760323 cites W2898373323 @default.
- W4283760323 cites W2944016032 @default.
- W4283760323 cites W2979748147 @default.
- W4283760323 cites W2999309192 @default.
- W4283760323 cites W3021503072 @default.
- W4283760323 cites W3045487226 @default.
- W4283760323 cites W3091989456 @default.
- W4283760323 cites W3098602564 @default.
- W4283760323 cites W3139012405 @default.
- W4283760323 cites W3153593645 @default.
- W4283760323 cites W3157477640 @default.
- W4283760323 cites W3197485119 @default.
- W4283760323 cites W320587423 @default.
- W4283760323 doi "https://doi.org/10.2478/raon-2022-0023" @default.
- W4283760323 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35776841" @default.
- W4283760323 hasPublicationYear "2022" @default.
- W4283760323 type Work @default.
- W4283760323 citedByCount "0" @default.
- W4283760323 crossrefType "journal-article" @default.
- W4283760323 hasAuthorship W4283760323A5001682030 @default.
- W4283760323 hasAuthorship W4283760323A5019000061 @default.
- W4283760323 hasAuthorship W4283760323A5051921971 @default.
- W4283760323 hasAuthorship W4283760323A5054567845 @default.
- W4283760323 hasBestOaLocation W42837603231 @default.
- W4283760323 hasConcept C10885799 @default.
- W4283760323 hasConcept C121608353 @default.
- W4283760323 hasConcept C126322002 @default.
- W4283760323 hasConcept C126838900 @default.
- W4283760323 hasConcept C142724271 @default.
- W4283760323 hasConcept C154945302 @default.
- W4283760323 hasConcept C2775894508 @default.
- W4283760323 hasConcept C2775924586 @default.
- W4283760323 hasConcept C2777343196 @default.
- W4283760323 hasConcept C2777740455 @default.
- W4283760323 hasConcept C2778220009 @default.
- W4283760323 hasConcept C2779234561 @default.
- W4283760323 hasConcept C29456083 @default.
- W4283760323 hasConcept C41008148 @default.
- W4283760323 hasConcept C4144372 @default.
- W4283760323 hasConcept C50644808 @default.
- W4283760323 hasConcept C54355233 @default.
- W4283760323 hasConcept C544855455 @default.
- W4283760323 hasConcept C65051434 @default.
- W4283760323 hasConcept C71924100 @default.
- W4283760323 hasConcept C86803240 @default.
- W4283760323 hasConceptScore W4283760323C10885799 @default.
- W4283760323 hasConceptScore W4283760323C121608353 @default.
- W4283760323 hasConceptScore W4283760323C126322002 @default.
- W4283760323 hasConceptScore W4283760323C126838900 @default.
- W4283760323 hasConceptScore W4283760323C142724271 @default.
- W4283760323 hasConceptScore W4283760323C154945302 @default.
- W4283760323 hasConceptScore W4283760323C2775894508 @default.
- W4283760323 hasConceptScore W4283760323C2775924586 @default.
- W4283760323 hasConceptScore W4283760323C2777343196 @default.
- W4283760323 hasConceptScore W4283760323C2777740455 @default.
- W4283760323 hasConceptScore W4283760323C2778220009 @default.
- W4283760323 hasConceptScore W4283760323C2779234561 @default.
- W4283760323 hasConceptScore W4283760323C29456083 @default.
- W4283760323 hasConceptScore W4283760323C41008148 @default.
- W4283760323 hasConceptScore W4283760323C4144372 @default.
- W4283760323 hasConceptScore W4283760323C50644808 @default.
- W4283760323 hasConceptScore W4283760323C54355233 @default.