Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283766952> ?p ?o ?g. }
- W4283766952 endingPage "108697" @default.
- W4283766952 startingPage "108697" @default.
- W4283766952 abstract "Ship groundings may often lead to damages resulting in oil spills or ship flooding and subsequent capsizing. Risks can be estimated qualitatively through experts’ judgment or quantitatively through the analysis of maritime traffic data. Yet, studies using big data remain limited. In this paper, we present a big data analytics method for the evaluation of grounding risk in real environmental conditions. The method makes use of big data streams from the Automatic Identification System (AIS), nowcast data, and the seafloor depth data from the General Bathymetric Chart of the Oceans (GEBCO). The evasive action of Ro-Pax passenger ships operating in shallow waters is idealized under various traffic patterns that link to side - or forward - grounding scenarios. Consequently, an Avoidance Behaviour-based Grounding Detection Model (ABGD-M) is introduced to identify potential grounding scenarios, and the grounding probabilistic risk is quantified at observation points along ship routes in various voyages. The method is applied on a Ro-Pax ship operating over 2.5 years ice-free period in the Gulf of Finland. Results indicate that grounding probabilistic risk estimation may be extremely diverse and depends on voyage routes, observation points, and operational conditions. It is concluded that the proposed method may assist with (1) better identification of critical grounding scenarios that are underestimated in existing accident databases; (2) improved understanding of grounding avoidance behaviours in real operational conditions; (3) the estimation of grounding probabilistic risk profile over the life cycle of fleet operations and (4) better evaluation of waterway complexity indices and ship operational vulnerability." @default.
- W4283766952 created "2022-07-03" @default.
- W4283766952 creator A5072835142 @default.
- W4283766952 creator A5081654579 @default.
- W4283766952 creator A5082122549 @default.
- W4283766952 date "2022-10-01" @default.
- W4283766952 modified "2023-10-18" @default.
- W4283766952 title "A machine learning method for the evaluation of ship grounding risk in real operational conditions" @default.
- W4283766952 cites W1986140147 @default.
- W4283766952 cites W1996984727 @default.
- W4283766952 cites W2042504638 @default.
- W4283766952 cites W2045929226 @default.
- W4283766952 cites W2088036356 @default.
- W4283766952 cites W2216314654 @default.
- W4283766952 cites W2264342650 @default.
- W4283766952 cites W2297440034 @default.
- W4283766952 cites W2410913786 @default.
- W4283766952 cites W2489678637 @default.
- W4283766952 cites W2509813992 @default.
- W4283766952 cites W2547575248 @default.
- W4283766952 cites W2753820606 @default.
- W4283766952 cites W2761989090 @default.
- W4283766952 cites W2767232159 @default.
- W4283766952 cites W2788818694 @default.
- W4283766952 cites W2789880608 @default.
- W4283766952 cites W2791526010 @default.
- W4283766952 cites W2801065239 @default.
- W4283766952 cites W2837297628 @default.
- W4283766952 cites W2887981216 @default.
- W4283766952 cites W2899187527 @default.
- W4283766952 cites W2912934741 @default.
- W4283766952 cites W2925620130 @default.
- W4283766952 cites W2936794463 @default.
- W4283766952 cites W2945289609 @default.
- W4283766952 cites W2952062072 @default.
- W4283766952 cites W2952860400 @default.
- W4283766952 cites W2964482263 @default.
- W4283766952 cites W2967428220 @default.
- W4283766952 cites W2970135749 @default.
- W4283766952 cites W2972175553 @default.
- W4283766952 cites W3009419987 @default.
- W4283766952 cites W3025353247 @default.
- W4283766952 cites W3035614351 @default.
- W4283766952 cites W3048741668 @default.
- W4283766952 cites W3048958139 @default.
- W4283766952 cites W3089854235 @default.
- W4283766952 cites W3091914433 @default.
- W4283766952 cites W3093868481 @default.
- W4283766952 cites W3094074305 @default.
- W4283766952 cites W3096298647 @default.
- W4283766952 cites W3099431668 @default.
- W4283766952 cites W3100153515 @default.
- W4283766952 cites W3105116032 @default.
- W4283766952 cites W3112901678 @default.
- W4283766952 cites W3121182670 @default.
- W4283766952 cites W3128181551 @default.
- W4283766952 cites W3154451294 @default.
- W4283766952 cites W3160246689 @default.
- W4283766952 cites W3168109058 @default.
- W4283766952 cites W3168460140 @default.
- W4283766952 cites W3168778636 @default.
- W4283766952 cites W3170125269 @default.
- W4283766952 cites W3175804750 @default.
- W4283766952 cites W3181175604 @default.
- W4283766952 cites W3189448883 @default.
- W4283766952 cites W3190343431 @default.
- W4283766952 cites W3196330020 @default.
- W4283766952 cites W3200310012 @default.
- W4283766952 cites W3209308620 @default.
- W4283766952 cites W4205772998 @default.
- W4283766952 cites W4280522270 @default.
- W4283766952 doi "https://doi.org/10.1016/j.ress.2022.108697" @default.
- W4283766952 hasPublicationYear "2022" @default.
- W4283766952 type Work @default.
- W4283766952 citedByCount "42" @default.
- W4283766952 countsByYear W42837669522022 @default.
- W4283766952 countsByYear W42837669522023 @default.
- W4283766952 crossrefType "journal-article" @default.
- W4283766952 hasAuthorship W4283766952A5072835142 @default.
- W4283766952 hasAuthorship W4283766952A5081654579 @default.
- W4283766952 hasAuthorship W4283766952A5082122549 @default.
- W4283766952 hasBestOaLocation W42837669521 @default.
- W4283766952 hasConcept C116834253 @default.
- W4283766952 hasConcept C119599485 @default.
- W4283766952 hasConcept C127413603 @default.
- W4283766952 hasConcept C154945302 @default.
- W4283766952 hasConcept C168993435 @default.
- W4283766952 hasConcept C178790620 @default.
- W4283766952 hasConcept C185592680 @default.
- W4283766952 hasConcept C199104240 @default.
- W4283766952 hasConcept C38652104 @default.
- W4283766952 hasConcept C41008148 @default.
- W4283766952 hasConcept C42475967 @default.
- W4283766952 hasConcept C49261128 @default.
- W4283766952 hasConcept C49937458 @default.
- W4283766952 hasConcept C59822182 @default.
- W4283766952 hasConcept C86803240 @default.
- W4283766952 hasConcept C95713431 @default.