Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283771248> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4283771248 endingPage "10" @default.
- W4283771248 startingPage "1" @default.
- W4283771248 abstract "Existing speech recognition systems are only for mainstream audio types; there is little research on language types; the system is subject to relatively large restrictions; and the recognition rate is not high. Therefore, how to use an efficient classifier to make a speech recognition system with a high recognition rate is one of the current research focuses. Based on the idea of machine learning, this study combines the computational random forest classification method to improve the algorithm and builds an English speech recognition model based on machine learning. Moreover, this study uses a lightweight model and its improved model to recognize speech signals and directly performs adaptive wavelet threshold shrinkage and denoising on the generated time-frequency images. In addition, this study uses the EI strong classifier to replace the softmax of the lightweight AlexNet model, which further improves the recognition accuracy under a low signal-to-noise ratio. Finally, this study designs experiments to verify the model effect. The research results show that the effect of the model constructed in this study is good." @default.
- W4283771248 created "2022-07-03" @default.
- W4283771248 creator A5007601670 @default.
- W4283771248 creator A5080024824 @default.
- W4283771248 date "2022-07-01" @default.
- W4283771248 modified "2023-10-14" @default.
- W4283771248 title "Simulation of English Speech Recognition Based on Improved Extreme Random Forest Classification" @default.
- W4283771248 cites W1752044926 @default.
- W4283771248 cites W1902122091 @default.
- W4283771248 cites W1992475611 @default.
- W4283771248 cites W1995562189 @default.
- W4283771248 cites W2076462394 @default.
- W4283771248 cites W2148030532 @default.
- W4283771248 cites W2298006035 @default.
- W4283771248 cites W2339865014 @default.
- W4283771248 cites W2515753980 @default.
- W4283771248 cites W2524049643 @default.
- W4283771248 cites W2559260703 @default.
- W4283771248 cites W2766219058 @default.
- W4283771248 doi "https://doi.org/10.1155/2022/1948159" @default.
- W4283771248 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35814545" @default.
- W4283771248 hasPublicationYear "2022" @default.
- W4283771248 type Work @default.
- W4283771248 citedByCount "0" @default.
- W4283771248 crossrefType "journal-article" @default.
- W4283771248 hasAuthorship W4283771248A5007601670 @default.
- W4283771248 hasAuthorship W4283771248A5080024824 @default.
- W4283771248 hasBestOaLocation W42837712481 @default.
- W4283771248 hasConcept C108583219 @default.
- W4283771248 hasConcept C119857082 @default.
- W4283771248 hasConcept C153180895 @default.
- W4283771248 hasConcept C154945302 @default.
- W4283771248 hasConcept C169258074 @default.
- W4283771248 hasConcept C188441871 @default.
- W4283771248 hasConcept C28490314 @default.
- W4283771248 hasConcept C41008148 @default.
- W4283771248 hasConcept C47432892 @default.
- W4283771248 hasConcept C95623464 @default.
- W4283771248 hasConceptScore W4283771248C108583219 @default.
- W4283771248 hasConceptScore W4283771248C119857082 @default.
- W4283771248 hasConceptScore W4283771248C153180895 @default.
- W4283771248 hasConceptScore W4283771248C154945302 @default.
- W4283771248 hasConceptScore W4283771248C169258074 @default.
- W4283771248 hasConceptScore W4283771248C188441871 @default.
- W4283771248 hasConceptScore W4283771248C28490314 @default.
- W4283771248 hasConceptScore W4283771248C41008148 @default.
- W4283771248 hasConceptScore W4283771248C47432892 @default.
- W4283771248 hasConceptScore W4283771248C95623464 @default.
- W4283771248 hasFunder F4320316089 @default.
- W4283771248 hasLocation W42837712481 @default.
- W4283771248 hasLocation W42837712482 @default.
- W4283771248 hasLocation W42837712483 @default.
- W4283771248 hasOpenAccess W4283771248 @default.
- W4283771248 hasPrimaryLocation W42837712481 @default.
- W4283771248 hasRelatedWork W2610906757 @default.
- W4283771248 hasRelatedWork W2743258233 @default.
- W4283771248 hasRelatedWork W2771515600 @default.
- W4283771248 hasRelatedWork W2900180889 @default.
- W4283771248 hasRelatedWork W2997969508 @default.
- W4283771248 hasRelatedWork W3120400911 @default.
- W4283771248 hasRelatedWork W3208883981 @default.
- W4283771248 hasRelatedWork W4307834408 @default.
- W4283771248 hasRelatedWork W4308191010 @default.
- W4283771248 hasRelatedWork W4320925816 @default.
- W4283771248 hasVolume "2022" @default.
- W4283771248 isParatext "false" @default.
- W4283771248 isRetracted "false" @default.
- W4283771248 workType "article" @default.