Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283774972> ?p ?o ?g. }
- W4283774972 endingPage "137859" @default.
- W4283774972 startingPage "137859" @default.
- W4283774972 abstract "The sub-millimeter bubble technique can enhance the gas–liquid inter-phase mass transfer by significantly reducing the bubble size and increasing the gas–liquid interfacial area. To accurately describe the flow and mass transfer characteristics, it is necessary to characterize bubble parameters. High-speed photography followed by image processing is an effective way to characterize the gas bubbles in the multiphase flows. However, the efficient image processing method for the sub-millimeter bubbly flows with high gas holdup and high bubble overlap has not been reported yet. The present work developed a novel deep learning-based image processing method for bubble detection, segmentation, and shape reconstruction in high gas holdup sub-millimeter bubbly flows. In order to segment the highly overlapping sub-millimeter bubbles, our method was built based on Mask R-CNN, with which the pixel-level segmentation masks can be obtained, and the shape of the overlapping bubbles can be accurately described. The feature pyramid architecture was coupled with ResNet101 and Feature Pyramid Network to detect sub-millimeter bubbles with significant size differences. A shape reconstruction module was proposed to restore the real shape of overlapping bubbles and improve prediction accuracy. In order to sufficiently validate the proposed method, adequate images of sub-millimeter bubbly flows were obtained by changing the experimental media (air-tap water, air-sodium dodecyl sulphate aqueous solution, air-diesel, and air-diesel-fine catalyst particles), reactor configurations (3D beds and 2D beds), lenses, and photography (shadowgraphy and front illumination). Our method shows high accuracy under the experimental conditions and can process sub-millimeter bubble images under gas holdup up to 20%." @default.
- W4283774972 created "2022-07-03" @default.
- W4283774972 creator A5019702308 @default.
- W4283774972 creator A5027686503 @default.
- W4283774972 creator A5033265749 @default.
- W4283774972 creator A5048720856 @default.
- W4283774972 creator A5059427769 @default.
- W4283774972 creator A5068409408 @default.
- W4283774972 creator A5089840083 @default.
- W4283774972 date "2022-12-01" @default.
- W4283774972 modified "2023-10-03" @default.
- W4283774972 title "A deep learning-based image processing method for bubble detection, segmentation, and shape reconstruction in high gas holdup sub-millimeter bubbly flows" @default.
- W4283774972 cites W1536680647 @default.
- W4283774972 cites W1966159202 @default.
- W4283774972 cites W1966394605 @default.
- W4283774972 cites W1996464144 @default.
- W4283774972 cites W2022736655 @default.
- W4283774972 cites W2026352564 @default.
- W4283774972 cites W2037401228 @default.
- W4283774972 cites W2064165884 @default.
- W4283774972 cites W2077310661 @default.
- W4283774972 cites W2080953448 @default.
- W4283774972 cites W2112667651 @default.
- W4283774972 cites W2127160357 @default.
- W4283774972 cites W2145023731 @default.
- W4283774972 cites W2156231221 @default.
- W4283774972 cites W2528656258 @default.
- W4283774972 cites W2543158573 @default.
- W4283774972 cites W2591880525 @default.
- W4283774972 cites W2755364080 @default.
- W4283774972 cites W2761911421 @default.
- W4283774972 cites W2770150521 @default.
- W4283774972 cites W2792422217 @default.
- W4283774972 cites W2896912070 @default.
- W4283774972 cites W2900999873 @default.
- W4283774972 cites W2933364878 @default.
- W4283774972 cites W2963150697 @default.
- W4283774972 cites W2996367417 @default.
- W4283774972 cites W2998464080 @default.
- W4283774972 cites W3000484198 @default.
- W4283774972 cites W3090343305 @default.
- W4283774972 cites W639708223 @default.
- W4283774972 doi "https://doi.org/10.1016/j.cej.2022.137859" @default.
- W4283774972 hasPublicationYear "2022" @default.
- W4283774972 type Work @default.
- W4283774972 citedByCount "12" @default.
- W4283774972 countsByYear W42837749722022 @default.
- W4283774972 countsByYear W42837749722023 @default.
- W4283774972 crossrefType "journal-article" @default.
- W4283774972 hasAuthorship W4283774972A5019702308 @default.
- W4283774972 hasAuthorship W4283774972A5027686503 @default.
- W4283774972 hasAuthorship W4283774972A5033265749 @default.
- W4283774972 hasAuthorship W4283774972A5048720856 @default.
- W4283774972 hasAuthorship W4283774972A5059427769 @default.
- W4283774972 hasAuthorship W4283774972A5068409408 @default.
- W4283774972 hasAuthorship W4283774972A5089840083 @default.
- W4283774972 hasConcept C109792285 @default.
- W4283774972 hasConcept C115961682 @default.
- W4283774972 hasConcept C120665830 @default.
- W4283774972 hasConcept C121332964 @default.
- W4283774972 hasConcept C138885662 @default.
- W4283774972 hasConcept C142575187 @default.
- W4283774972 hasConcept C154945302 @default.
- W4283774972 hasConcept C157915830 @default.
- W4283774972 hasConcept C192562407 @default.
- W4283774972 hasConcept C2776401178 @default.
- W4283774972 hasConcept C2778260026 @default.
- W4283774972 hasConcept C41008148 @default.
- W4283774972 hasConcept C41895202 @default.
- W4283774972 hasConcept C45764600 @default.
- W4283774972 hasConcept C520434653 @default.
- W4283774972 hasConcept C57879066 @default.
- W4283774972 hasConcept C89600930 @default.
- W4283774972 hasConcept C9417928 @default.
- W4283774972 hasConceptScore W4283774972C109792285 @default.
- W4283774972 hasConceptScore W4283774972C115961682 @default.
- W4283774972 hasConceptScore W4283774972C120665830 @default.
- W4283774972 hasConceptScore W4283774972C121332964 @default.
- W4283774972 hasConceptScore W4283774972C138885662 @default.
- W4283774972 hasConceptScore W4283774972C142575187 @default.
- W4283774972 hasConceptScore W4283774972C154945302 @default.
- W4283774972 hasConceptScore W4283774972C157915830 @default.
- W4283774972 hasConceptScore W4283774972C192562407 @default.
- W4283774972 hasConceptScore W4283774972C2776401178 @default.
- W4283774972 hasConceptScore W4283774972C2778260026 @default.
- W4283774972 hasConceptScore W4283774972C41008148 @default.
- W4283774972 hasConceptScore W4283774972C41895202 @default.
- W4283774972 hasConceptScore W4283774972C45764600 @default.
- W4283774972 hasConceptScore W4283774972C520434653 @default.
- W4283774972 hasConceptScore W4283774972C57879066 @default.
- W4283774972 hasConceptScore W4283774972C89600930 @default.
- W4283774972 hasConceptScore W4283774972C9417928 @default.
- W4283774972 hasFunder F4320321001 @default.
- W4283774972 hasLocation W42837749721 @default.
- W4283774972 hasOpenAccess W4283774972 @default.
- W4283774972 hasPrimaryLocation W42837749721 @default.
- W4283774972 hasRelatedWork W1863871834 @default.
- W4283774972 hasRelatedWork W2532775738 @default.