Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283776488> ?p ?o ?g. }
- W4283776488 endingPage "27" @default.
- W4283776488 startingPage "1" @default.
- W4283776488 abstract "A large number of publications have incorporated deep learning in the process of remote sensing change detection. In these Deep Learning Change Detection (DLCD) publications, deep learning methods have demonstrated their superiority over conventional change detection methods. However, the theoretical underpinnings of why deep learning improves the performance of change detection remain unresolved. As of today, few in-depth reviews have investigated the mechanisms of DLCD. Without such a review, five critical questions remain unclear. Does DLCD provide improved information representation for change detection? If so, how? How to select an appropriate DLCD method and why? How much does each type of change benefits from DLCD in terms of its performance? What are the major limitations of existing DLCD methods and what are the prospects for DLCD? To address these five questions, we reviewed according to the following strategies. We grouped the DLCD information assemblages into the four unique dimensions of remote sensing: spectral, spatial, temporal, and multi-sensor. For the extraction of information in each dimension, the difference between DLCD and conventional change detection methods was compared. We proposed a taxonomy of existing DLCD methods by dividing them into two distinctive pools: separate and coupled models. Their advantages, limitations, applicability, and performance were thoroughly investigated and explicitly presented. We examined the variations in performance between DLCD and conventional change detection. We depicted two limitations of DLCD, i.e. training sample and hardware and software dilemmas. Based on these analyses, we identified directions for future developments. As a result of our review, we found that DLCD’s advantages over conventional change detection can be attributed to three factors: improved information representation; improved change detection methods; and performance enhancements. DLCD has to surpass the limitations with regard to training samples and computing infrastructure. We envision this review can boost developments of deep learning in change detection applications." @default.
- W4283776488 created "2022-07-03" @default.
- W4283776488 creator A5006872582 @default.
- W4283776488 creator A5012567629 @default.
- W4283776488 creator A5021095828 @default.
- W4283776488 creator A5021670446 @default.
- W4283776488 creator A5032041962 @default.
- W4283776488 creator A5061912187 @default.
- W4283776488 creator A5070369693 @default.
- W4283776488 date "2022-07-01" @default.
- W4283776488 modified "2023-10-09" @default.
- W4283776488 title "Deep learning for change detection in remote sensing: a review" @default.
- W4283776488 cites W1601139921 @default.
- W4283776488 cites W1968573840 @default.
- W4283776488 cites W1981795482 @default.
- W4283776488 cites W2007447365 @default.
- W4283776488 cites W2015386604 @default.
- W4283776488 cites W2028018893 @default.
- W4283776488 cites W2032552004 @default.
- W4283776488 cites W2036632898 @default.
- W4283776488 cites W2036798369 @default.
- W4283776488 cites W2038976302 @default.
- W4283776488 cites W2049585214 @default.
- W4283776488 cites W2050870018 @default.
- W4283776488 cites W2067441435 @default.
- W4283776488 cites W2068618411 @default.
- W4283776488 cites W2074823111 @default.
- W4283776488 cites W2076923985 @default.
- W4283776488 cites W2085289201 @default.
- W4283776488 cites W2100495367 @default.
- W4283776488 cites W2107878631 @default.
- W4283776488 cites W2112796928 @default.
- W4283776488 cites W2120957161 @default.
- W4283776488 cites W2123775670 @default.
- W4283776488 cites W2130811469 @default.
- W4283776488 cites W2132222679 @default.
- W4283776488 cites W2132424367 @default.
- W4283776488 cites W2135803256 @default.
- W4283776488 cites W2136922672 @default.
- W4283776488 cites W2153864221 @default.
- W4283776488 cites W2157026765 @default.
- W4283776488 cites W2165577558 @default.
- W4283776488 cites W2166052353 @default.
- W4283776488 cites W2167093797 @default.
- W4283776488 cites W2221448138 @default.
- W4283776488 cites W2295862745 @default.
- W4283776488 cites W2412588858 @default.
- W4283776488 cites W2431738724 @default.
- W4283776488 cites W2516616494 @default.
- W4283776488 cites W2521106218 @default.
- W4283776488 cites W2552603604 @default.
- W4283776488 cites W2564140372 @default.
- W4283776488 cites W2571440227 @default.
- W4283776488 cites W2587329506 @default.
- W4283776488 cites W2610166850 @default.
- W4283776488 cites W2611719608 @default.
- W4283776488 cites W2615543373 @default.
- W4283776488 cites W2627081599 @default.
- W4283776488 cites W2735042947 @default.
- W4283776488 cites W2738855634 @default.
- W4283776488 cites W2746325398 @default.
- W4283776488 cites W2750976776 @default.
- W4283776488 cites W2751993439 @default.
- W4283776488 cites W2752414286 @default.
- W4283776488 cites W2758210752 @default.
- W4283776488 cites W2760340275 @default.
- W4283776488 cites W2766049824 @default.
- W4283776488 cites W2773075718 @default.
- W4283776488 cites W2774181958 @default.
- W4283776488 cites W2775121869 @default.
- W4283776488 cites W2775148801 @default.
- W4283776488 cites W2778830079 @default.
- W4283776488 cites W277886906 @default.
- W4283776488 cites W2781778455 @default.
- W4283776488 cites W2782522152 @default.
- W4283776488 cites W2792365373 @default.
- W4283776488 cites W2792827505 @default.
- W4283776488 cites W2794274366 @default.
- W4283776488 cites W2809532089 @default.
- W4283776488 cites W2837755891 @default.
- W4283776488 cites W2888697548 @default.
- W4283776488 cites W2892135535 @default.
- W4283776488 cites W2895794596 @default.
- W4283776488 cites W2900587135 @default.
- W4283776488 cites W2900663851 @default.
- W4283776488 cites W2901718368 @default.
- W4283776488 cites W2901868594 @default.
- W4283776488 cites W2901964636 @default.
- W4283776488 cites W2902779903 @default.
- W4283776488 cites W2905609166 @default.
- W4283776488 cites W2908048833 @default.
- W4283776488 cites W2910587630 @default.
- W4283776488 cites W2911648799 @default.
- W4283776488 cites W2911805825 @default.
- W4283776488 cites W2913323966 @default.
- W4283776488 cites W2914757358 @default.
- W4283776488 cites W2916838572 @default.
- W4283776488 cites W2918277739 @default.