Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283777086> ?p ?o ?g. }
- W4283777086 endingPage "14" @default.
- W4283777086 startingPage "1" @default.
- W4283777086 abstract "Intelligent fault diagnosis methods based on deep learning have achieved much progress in recent years. However, there are two major factors causing serious degradation of the performance of these algorithms in real industrial applications, i.e., limited labeled training data and complex working conditions. To solve these problems, this study proposed a domain generalization-based hybrid matching network utilizing a matching network to diagnose the faults using features encoded by an autoencoder. The main idea was to regularize the feature extractor of the network with an autoencoder in order to reduce the risk of overfitting with limited training samples. In addition, a training strategy using dropout with random changing rates on inputs was implemented to enhance the model's generalization on unseen domains. The proposed method was validated on two different datasets containing artificial and real faults. The results showed that considerable performance was achieved by the proposed method under cross-domain tasks with limited training samples." @default.
- W4283777086 created "2022-07-03" @default.
- W4283777086 creator A5008285692 @default.
- W4283777086 creator A5018566115 @default.
- W4283777086 creator A5027786899 @default.
- W4283777086 creator A5045018604 @default.
- W4283777086 creator A5059914660 @default.
- W4283777086 creator A5088839600 @default.
- W4283777086 date "2022-07-01" @default.
- W4283777086 modified "2023-10-15" @default.
- W4283777086 title "A Hybrid Matching Network for Fault Diagnosis under Different Working Conditions with Limited Data" @default.
- W4283777086 cites W2287029277 @default.
- W4283777086 cites W2324044936 @default.
- W4283777086 cites W243674440 @default.
- W4283777086 cites W2504252959 @default.
- W4283777086 cites W2584994008 @default.
- W4283777086 cites W2595657631 @default.
- W4283777086 cites W2744790985 @default.
- W4283777086 cites W2791694051 @default.
- W4283777086 cites W2810292802 @default.
- W4283777086 cites W2907541186 @default.
- W4283777086 cites W2949363059 @default.
- W4283777086 cites W2953958484 @default.
- W4283777086 cites W2954792909 @default.
- W4283777086 cites W2967115638 @default.
- W4283777086 cites W2995279030 @default.
- W4283777086 cites W3002249742 @default.
- W4283777086 cites W3004574399 @default.
- W4283777086 cites W3015173390 @default.
- W4283777086 cites W3020996329 @default.
- W4283777086 cites W3028325023 @default.
- W4283777086 cites W3041076719 @default.
- W4283777086 cites W3092022274 @default.
- W4283777086 cites W3092068739 @default.
- W4283777086 cites W3094110601 @default.
- W4283777086 cites W3094159940 @default.
- W4283777086 cites W3116528219 @default.
- W4283777086 cites W3126227157 @default.
- W4283777086 cites W3126446664 @default.
- W4283777086 cites W3129318029 @default.
- W4283777086 cites W3137795735 @default.
- W4283777086 cites W3142420316 @default.
- W4283777086 cites W3144490011 @default.
- W4283777086 cites W3154112484 @default.
- W4283777086 cites W3154173867 @default.
- W4283777086 cites W3155552745 @default.
- W4283777086 cites W3157095370 @default.
- W4283777086 cites W3164543983 @default.
- W4283777086 cites W3166506493 @default.
- W4283777086 cites W3170313526 @default.
- W4283777086 cites W3203041483 @default.
- W4283777086 cites W3215724944 @default.
- W4283777086 cites W4200000271 @default.
- W4283777086 doi "https://doi.org/10.1155/2022/3024590" @default.
- W4283777086 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35814590" @default.
- W4283777086 hasPublicationYear "2022" @default.
- W4283777086 type Work @default.
- W4283777086 citedByCount "2" @default.
- W4283777086 countsByYear W42837770862022 @default.
- W4283777086 countsByYear W42837770862023 @default.
- W4283777086 crossrefType "journal-article" @default.
- W4283777086 hasAuthorship W4283777086A5008285692 @default.
- W4283777086 hasAuthorship W4283777086A5018566115 @default.
- W4283777086 hasAuthorship W4283777086A5027786899 @default.
- W4283777086 hasAuthorship W4283777086A5045018604 @default.
- W4283777086 hasAuthorship W4283777086A5059914660 @default.
- W4283777086 hasAuthorship W4283777086A5088839600 @default.
- W4283777086 hasBestOaLocation W42837770861 @default.
- W4283777086 hasConcept C101738243 @default.
- W4283777086 hasConcept C105795698 @default.
- W4283777086 hasConcept C119857082 @default.
- W4283777086 hasConcept C124101348 @default.
- W4283777086 hasConcept C127313418 @default.
- W4283777086 hasConcept C134306372 @default.
- W4283777086 hasConcept C138885662 @default.
- W4283777086 hasConcept C153180895 @default.
- W4283777086 hasConcept C154945302 @default.
- W4283777086 hasConcept C165064840 @default.
- W4283777086 hasConcept C165205528 @default.
- W4283777086 hasConcept C175551986 @default.
- W4283777086 hasConcept C177148314 @default.
- W4283777086 hasConcept C22019652 @default.
- W4283777086 hasConcept C2776145597 @default.
- W4283777086 hasConcept C2776401178 @default.
- W4283777086 hasConcept C33923547 @default.
- W4283777086 hasConcept C36503486 @default.
- W4283777086 hasConcept C41008148 @default.
- W4283777086 hasConcept C41895202 @default.
- W4283777086 hasConcept C50644808 @default.
- W4283777086 hasConceptScore W4283777086C101738243 @default.
- W4283777086 hasConceptScore W4283777086C105795698 @default.
- W4283777086 hasConceptScore W4283777086C119857082 @default.
- W4283777086 hasConceptScore W4283777086C124101348 @default.
- W4283777086 hasConceptScore W4283777086C127313418 @default.
- W4283777086 hasConceptScore W4283777086C134306372 @default.
- W4283777086 hasConceptScore W4283777086C138885662 @default.
- W4283777086 hasConceptScore W4283777086C153180895 @default.
- W4283777086 hasConceptScore W4283777086C154945302 @default.