Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283780304> ?p ?o ?g. }
- W4283780304 endingPage "3520" @default.
- W4283780304 startingPage "3489" @default.
- W4283780304 abstract "Recently, independent groups of researchers have presented algorithms to compute a maximum matching in $$tilde{mathcal{O}}(f(k) cdot (n+m))$$ time, for some computable function f, within the graphs where some clique-width upper bound is at most k (e.g., tree-width, modular-width and $$P_4$$ -sparseness). However, to the best of our knowledge, the existence of such algorithm within the graphs of bounded clique-width has remained open until this paper. Indeed, we cannot even apply Courcelle’s theorem to this problem directly, because a matching cannot be expressed in $$MSO_1$$ logic. Our first contribution is an almost linear-time algorithm to compute a maximum matching in any bounded clique-width graph, being given a corresponding clique-width expression. We also present how to compute the Edmonds-Gallai decomposition in almost linear time by using the same framework. For that, we do apply Courcelle’s theorem but to the classic Tutte-Berge formula, that can easily be expressed as a $$CMSO_1$$ optimization problem. Doing so, we can compute the cardinality of a maximum matching, but not the matching itself. To obtain with this approach a maximum matching, we need to combine it with a recursive dissection scheme for bounded clique-width graphs and with a distributed version of Courcelle’s theorem (Courcelle and Vanicat, DAM 2016) – of which we present here a slightly stronger version than the standard one in the literature. Finally, for the bipartite graphs of clique-width at most k, we present an alternative $$tilde{mathcal{O}}(k^2cdot (n+m))$$ -time algorithm for the problem. The algorithm is randomized and it is based on a completely different approach than above: combining various reductions to matching and flow problems on bounded tree-width graphs with a very recent result on the parameterized complexity of linear programming (Dong et. al., STOC’21). Our results for bounded clique-width graphs extend many prior works on the complexity of Maximum Matching within cographs, distance-hereditary graphs, series-parallel graphs and other subclasses." @default.
- W4283780304 created "2022-07-03" @default.
- W4283780304 creator A5020003818 @default.
- W4283780304 date "2022-07-02" @default.
- W4283780304 modified "2023-10-16" @default.
- W4283780304 title "Maximum Matching in Almost Linear Time on Graphs of Bounded Clique-Width" @default.
- W4283780304 cites W1519280321 @default.
- W4283780304 cites W1546876109 @default.
- W4283780304 cites W1555816812 @default.
- W4283780304 cites W1581957840 @default.
- W4283780304 cites W1966596093 @default.
- W4283780304 cites W1973117121 @default.
- W4283780304 cites W1973188675 @default.
- W4283780304 cites W1976120600 @default.
- W4283780304 cites W1985061810 @default.
- W4283780304 cites W1993328543 @default.
- W4283780304 cites W1995739513 @default.
- W4283780304 cites W1996722412 @default.
- W4283780304 cites W1999145171 @default.
- W4283780304 cites W2003813631 @default.
- W4283780304 cites W2005633226 @default.
- W4283780304 cites W2013967419 @default.
- W4283780304 cites W2022499468 @default.
- W4283780304 cites W2026055698 @default.
- W4283780304 cites W2026807383 @default.
- W4283780304 cites W2028357390 @default.
- W4283780304 cites W2031966632 @default.
- W4283780304 cites W2035020702 @default.
- W4283780304 cites W2039305125 @default.
- W4283780304 cites W2053991811 @default.
- W4283780304 cites W2062170486 @default.
- W4283780304 cites W2062510888 @default.
- W4283780304 cites W2063951771 @default.
- W4283780304 cites W2065410741 @default.
- W4283780304 cites W2073663206 @default.
- W4283780304 cites W2084375356 @default.
- W4283780304 cites W2087911394 @default.
- W4283780304 cites W2089158353 @default.
- W4283780304 cites W2108763491 @default.
- W4283780304 cites W2132172863 @default.
- W4283780304 cites W2133352257 @default.
- W4283780304 cites W2144795927 @default.
- W4283780304 cites W2170114629 @default.
- W4283780304 cites W2294619171 @default.
- W4283780304 cites W2317309498 @default.
- W4283780304 cites W2551688242 @default.
- W4283780304 cites W2591578573 @default.
- W4283780304 cites W2617953066 @default.
- W4283780304 cites W2892948282 @default.
- W4283780304 cites W2949142592 @default.
- W4283780304 cites W2963549387 @default.
- W4283780304 cites W2963561518 @default.
- W4283780304 cites W2964074136 @default.
- W4283780304 cites W3115625065 @default.
- W4283780304 cites W3116253690 @default.
- W4283780304 cites W3142718897 @default.
- W4283780304 cites W3167765036 @default.
- W4283780304 cites W3212717626 @default.
- W4283780304 cites W4213311856 @default.
- W4283780304 cites W4232896595 @default.
- W4283780304 cites W4233756358 @default.
- W4283780304 cites W4235239597 @default.
- W4283780304 cites W4243936346 @default.
- W4283780304 cites W4256179294 @default.
- W4283780304 cites W1591789561 @default.
- W4283780304 doi "https://doi.org/10.1007/s00453-022-00999-9" @default.
- W4283780304 hasPublicationYear "2022" @default.
- W4283780304 type Work @default.
- W4283780304 citedByCount "0" @default.
- W4283780304 crossrefType "journal-article" @default.
- W4283780304 hasAuthorship W4283780304A5020003818 @default.
- W4283780304 hasBestOaLocation W42837803042 @default.
- W4283780304 hasConcept C105795698 @default.
- W4283780304 hasConcept C11413529 @default.
- W4283780304 hasConcept C114614502 @default.
- W4283780304 hasConcept C118615104 @default.
- W4283780304 hasConcept C124101348 @default.
- W4283780304 hasConcept C132525143 @default.
- W4283780304 hasConcept C132569581 @default.
- W4283780304 hasConcept C134306372 @default.
- W4283780304 hasConcept C165064840 @default.
- W4283780304 hasConcept C197657726 @default.
- W4283780304 hasConcept C203776342 @default.
- W4283780304 hasConcept C24858836 @default.
- W4283780304 hasConcept C2777035058 @default.
- W4283780304 hasConcept C33923547 @default.
- W4283780304 hasConcept C34388435 @default.
- W4283780304 hasConcept C41008148 @default.
- W4283780304 hasConcept C43517604 @default.
- W4283780304 hasConcept C77553402 @default.
- W4283780304 hasConcept C87117476 @default.
- W4283780304 hasConceptScore W4283780304C105795698 @default.
- W4283780304 hasConceptScore W4283780304C11413529 @default.
- W4283780304 hasConceptScore W4283780304C114614502 @default.
- W4283780304 hasConceptScore W4283780304C118615104 @default.
- W4283780304 hasConceptScore W4283780304C124101348 @default.
- W4283780304 hasConceptScore W4283780304C132525143 @default.
- W4283780304 hasConceptScore W4283780304C132569581 @default.