Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283785408> ?p ?o ?g. }
- W4283785408 endingPage "6690" @default.
- W4283785408 startingPage "6690" @default.
- W4283785408 abstract "Numerical simulation has emerged as a powerful technique for landslide failure mechanism analysis and accurate stability assessment. However, due to the bias of simplified numerical models and the uncertainty of geomechanical parameters, simulation results often differ greatly from the actual situation. Therefore, in order to ensure the accuracy and rationality of numerical simulation results, and to improve landslide hazard warning capability, techniques and methods such as displacement back-analysis, machine learning, and numerical simulation are combined to create a novel landslide warning method based on DBA-LSTM (displacement back-analysis based on long short-term memory networks), and a numerical simulation algorithm is proposed, i.e., the DBA-LSTM algorithm is used to invert the equivalent physical and mechanical parameters of the numerical model, and the modified numerical model is used for stability analysis and failure simulation. Taking the Shangtan landslide as an example, the deformation mechanism of the landslide was analyzed based on the field monitoring data, and subsequently, the superiority of the DBA-LSTM algorithm was verified by comparing it with DBA-BPNN (displacement back-analysis based on back-propagation neural network); finally, the stability of the landslide was analyzed and evaluated a posteriori using the warning threshold calculated by the proposed method. The analytical results show that the displacement back-analysis based on the machine learning (DBA-ML) algorithm can achieve more than 95% accuracy, and the deep learning algorithm exemplified by LSTM had higher accuracy compared to the classical BPNN algorithm, meaning that it can be used to further improve the existing intelligent inversion theory and method. The proposed method calculates the landslide’s factor of safety (FOS) before the accelerated deformation to be 1.38 and predicts that the landslide is in a metastable state after accelerated deformation rather than in failure. Compared to traditional empirical warning models, our method can avoid false warnings and can provide a new reference for research on landslide hazard warnings." @default.
- W4283785408 created "2022-07-04" @default.
- W4283785408 creator A5018904310 @default.
- W4283785408 creator A5045132231 @default.
- W4283785408 creator A5048696544 @default.
- W4283785408 creator A5066745947 @default.
- W4283785408 date "2022-07-01" @default.
- W4283785408 modified "2023-10-18" @default.
- W4283785408 title "Determination of Landslide Displacement Warning Thresholds by Applying DBA-LSTM and Numerical Simulation Algorithms" @default.
- W4283785408 cites W1967253474 @default.
- W4283785408 cites W1975740441 @default.
- W4283785408 cites W1977396217 @default.
- W4283785408 cites W1985702388 @default.
- W4283785408 cites W2013991066 @default.
- W4283785408 cites W2059482121 @default.
- W4283785408 cites W2088056599 @default.
- W4283785408 cites W2100495367 @default.
- W4283785408 cites W2136936714 @default.
- W4283785408 cites W2187054651 @default.
- W4283785408 cites W2190226824 @default.
- W4283785408 cites W2227247224 @default.
- W4283785408 cites W2561362314 @default.
- W4283785408 cites W2624050347 @default.
- W4283785408 cites W2762941055 @default.
- W4283785408 cites W2888976312 @default.
- W4283785408 cites W2899275326 @default.
- W4283785408 cites W2913889437 @default.
- W4283785408 cites W2981571957 @default.
- W4283785408 cites W2997615766 @default.
- W4283785408 cites W2999729702 @default.
- W4283785408 cites W3010879889 @default.
- W4283785408 cites W3019612360 @default.
- W4283785408 cites W3025338173 @default.
- W4283785408 cites W3026791958 @default.
- W4283785408 cites W3036022063 @default.
- W4283785408 cites W3081448097 @default.
- W4283785408 cites W3081648450 @default.
- W4283785408 cites W3085968358 @default.
- W4283785408 cites W3120957519 @default.
- W4283785408 cites W3121629070 @default.
- W4283785408 cites W3138356816 @default.
- W4283785408 cites W3143009190 @default.
- W4283785408 cites W3164422209 @default.
- W4283785408 cites W3173406454 @default.
- W4283785408 cites W3198048317 @default.
- W4283785408 cites W3211100388 @default.
- W4283785408 cites W4206339162 @default.
- W4283785408 cites W4206518093 @default.
- W4283785408 cites W4240704159 @default.
- W4283785408 doi "https://doi.org/10.3390/app12136690" @default.
- W4283785408 hasPublicationYear "2022" @default.
- W4283785408 type Work @default.
- W4283785408 citedByCount "5" @default.
- W4283785408 countsByYear W42837854082022 @default.
- W4283785408 countsByYear W42837854082023 @default.
- W4283785408 crossrefType "journal-article" @default.
- W4283785408 hasAuthorship W4283785408A5018904310 @default.
- W4283785408 hasAuthorship W4283785408A5045132231 @default.
- W4283785408 hasAuthorship W4283785408A5048696544 @default.
- W4283785408 hasAuthorship W4283785408A5066745947 @default.
- W4283785408 hasBestOaLocation W42837854081 @default.
- W4283785408 hasConcept C107551265 @default.
- W4283785408 hasConcept C112972136 @default.
- W4283785408 hasConcept C11413529 @default.
- W4283785408 hasConcept C119857082 @default.
- W4283785408 hasConcept C127413603 @default.
- W4283785408 hasConcept C134306372 @default.
- W4283785408 hasConcept C154945302 @default.
- W4283785408 hasConcept C15744967 @default.
- W4283785408 hasConcept C186295008 @default.
- W4283785408 hasConcept C187320778 @default.
- W4283785408 hasConcept C29825287 @default.
- W4283785408 hasConcept C33923547 @default.
- W4283785408 hasConcept C41008148 @default.
- W4283785408 hasConcept C44154836 @default.
- W4283785408 hasConcept C48753275 @default.
- W4283785408 hasConcept C500300565 @default.
- W4283785408 hasConcept C50644808 @default.
- W4283785408 hasConcept C542102704 @default.
- W4283785408 hasConcept C76155785 @default.
- W4283785408 hasConceptScore W4283785408C107551265 @default.
- W4283785408 hasConceptScore W4283785408C112972136 @default.
- W4283785408 hasConceptScore W4283785408C11413529 @default.
- W4283785408 hasConceptScore W4283785408C119857082 @default.
- W4283785408 hasConceptScore W4283785408C127413603 @default.
- W4283785408 hasConceptScore W4283785408C134306372 @default.
- W4283785408 hasConceptScore W4283785408C154945302 @default.
- W4283785408 hasConceptScore W4283785408C15744967 @default.
- W4283785408 hasConceptScore W4283785408C186295008 @default.
- W4283785408 hasConceptScore W4283785408C187320778 @default.
- W4283785408 hasConceptScore W4283785408C29825287 @default.
- W4283785408 hasConceptScore W4283785408C33923547 @default.
- W4283785408 hasConceptScore W4283785408C41008148 @default.
- W4283785408 hasConceptScore W4283785408C44154836 @default.
- W4283785408 hasConceptScore W4283785408C48753275 @default.
- W4283785408 hasConceptScore W4283785408C500300565 @default.
- W4283785408 hasConceptScore W4283785408C50644808 @default.
- W4283785408 hasConceptScore W4283785408C542102704 @default.