Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283785453> ?p ?o ?g. }
- W4283785453 endingPage "104800" @default.
- W4283785453 startingPage "104800" @default.
- W4283785453 abstract "Coasts are highly dynamic systems. Understanding how they respond to individual storms events and to future climate change is difficult as local boundary conditions determines their evolutionary trajectory. A lack of field data at this local scale therefore limits the ability of managers and researchers to apply existing modelling frameworks to their region of interest to ensure preservation of the natural environment. Data acquisition through low-cost Unoccupied Aerial Vehicles (UAVs) has become a viable means for obtaining high-resolution surveys (cm-scale) on the coast for whole sediment compartments (km-scale). A continued limitation however is the intensive labour costs involved in data acquisition. Here we show the power of Citizen Science in providing high quality, cost-effective data collection, when provided with adequate training and resources along a high-energy, temperate coast in Victoria, Australia. This was conducted through the Victorian Coastal Monitoring Program (VCMP), formed in 2018 as a collaboration between Australian universities and the Victorian State Government. As of 2022, this program covered 28 sites, with over 450 individual surveys taken at 6–8 week intervals. The VCMP has guided and driven significant management actions on the coast from realignment of coastal walking paths for public safety to measuring sand renourishment success. In this paper we (i) present the Citizen Science UAV program methodology, as an example that can be replicated in other jurisdictions, and (ii) illustrate, through a case-study of a sandy beach and rocky cliff, the benefits and precision achievable using our Citizen Science approach. We outline how outputs can be made widely available and applied to coastal management, with the aid of data portals and decision support systems. This data accessibility has been central to our community engagement, enabling citizen scientists to conduct their own bespoke analysis for co-creation of management solutions for their local area. It was also found to be key for facilitating continued community engagement during one of the world's longest lockdowns of the COVID-19 pandemic, impacting the program for almost two years. • Innovative shoreline and volumetric mapping approach integrating Citizen Science and Unoccupied Aerial Vehicles (UAVs). • We present a methodology enabling citizen scientists to use off-the-shelf UAVs for mapping in the coastal zone. • We demonstrate through case studies how UAV data captured can extend from understanding beach morphodynamics to characterising cliff collapses." @default.
- W4283785453 created "2022-07-04" @default.
- W4283785453 creator A5000078557 @default.
- W4283785453 creator A5004476767 @default.
- W4283785453 creator A5012167337 @default.
- W4283785453 creator A5015242253 @default.
- W4283785453 creator A5025790072 @default.
- W4283785453 creator A5044950287 @default.
- W4283785453 creator A5067030694 @default.
- W4283785453 creator A5075734722 @default.
- W4283785453 creator A5083308336 @default.
- W4283785453 creator A5087343014 @default.
- W4283785453 date "2022-07-01" @default.
- W4283785453 modified "2023-10-01" @default.
- W4283785453 title "Citizen science unoccupied aerial vehicles: A technique for advancing coastal data acquisition for management and research" @default.
- W4283785453 cites W1608310650 @default.
- W4283785453 cites W1970351497 @default.
- W4283785453 cites W1987172718 @default.
- W4283785453 cites W1991793005 @default.
- W4283785453 cites W2025963304 @default.
- W4283785453 cites W2027254180 @default.
- W4283785453 cites W2049893362 @default.
- W4283785453 cites W2054538524 @default.
- W4283785453 cites W2055429482 @default.
- W4283785453 cites W2059038779 @default.
- W4283785453 cites W2059056065 @default.
- W4283785453 cites W2069503942 @default.
- W4283785453 cites W2075614191 @default.
- W4283785453 cites W2083912066 @default.
- W4283785453 cites W2106838999 @default.
- W4283785453 cites W2109451666 @default.
- W4283785453 cites W2118898434 @default.
- W4283785453 cites W2118919649 @default.
- W4283785453 cites W2150093133 @default.
- W4283785453 cites W2151915598 @default.
- W4283785453 cites W2171103210 @default.
- W4283785453 cites W2276952296 @default.
- W4283785453 cites W2319729657 @default.
- W4283785453 cites W2336502929 @default.
- W4283785453 cites W2340703094 @default.
- W4283785453 cites W2468006349 @default.
- W4283785453 cites W2510835776 @default.
- W4283785453 cites W2535341489 @default.
- W4283785453 cites W2571149404 @default.
- W4283785453 cites W2587432097 @default.
- W4283785453 cites W2602363400 @default.
- W4283785453 cites W2605432239 @default.
- W4283785453 cites W2735015065 @default.
- W4283785453 cites W2745368298 @default.
- W4283785453 cites W2779252763 @default.
- W4283785453 cites W2792042865 @default.
- W4283785453 cites W2802213413 @default.
- W4283785453 cites W2804433907 @default.
- W4283785453 cites W2900641910 @default.
- W4283785453 cites W2905329616 @default.
- W4283785453 cites W2915343025 @default.
- W4283785453 cites W2922306179 @default.
- W4283785453 cites W2941672057 @default.
- W4283785453 cites W2946275503 @default.
- W4283785453 cites W2972023696 @default.
- W4283785453 cites W2979527643 @default.
- W4283785453 cites W3006395778 @default.
- W4283785453 cites W3022683052 @default.
- W4283785453 cites W3034822394 @default.
- W4283785453 cites W3087193216 @default.
- W4283785453 cites W3119072657 @default.
- W4283785453 cites W3131045792 @default.
- W4283785453 cites W3133617843 @default.
- W4283785453 cites W3152562988 @default.
- W4283785453 cites W3158818754 @default.
- W4283785453 cites W3168636877 @default.
- W4283785453 cites W3206489260 @default.
- W4283785453 cites W3207348781 @default.
- W4283785453 cites W4214926055 @default.
- W4283785453 cites W606253716 @default.
- W4283785453 doi "https://doi.org/10.1016/j.csr.2022.104800" @default.
- W4283785453 hasPublicationYear "2022" @default.
- W4283785453 type Work @default.
- W4283785453 citedByCount "3" @default.
- W4283785453 countsByYear W42837854532022 @default.
- W4283785453 countsByYear W42837854532023 @default.
- W4283785453 crossrefType "journal-article" @default.
- W4283785453 hasAuthorship W4283785453A5000078557 @default.
- W4283785453 hasAuthorship W4283785453A5004476767 @default.
- W4283785453 hasAuthorship W4283785453A5012167337 @default.
- W4283785453 hasAuthorship W4283785453A5015242253 @default.
- W4283785453 hasAuthorship W4283785453A5025790072 @default.
- W4283785453 hasAuthorship W4283785453A5044950287 @default.
- W4283785453 hasAuthorship W4283785453A5067030694 @default.
- W4283785453 hasAuthorship W4283785453A5075734722 @default.
- W4283785453 hasAuthorship W4283785453A5083308336 @default.
- W4283785453 hasAuthorship W4283785453A5087343014 @default.
- W4283785453 hasConcept C105306849 @default.
- W4283785453 hasConcept C105795698 @default.
- W4283785453 hasConcept C107826830 @default.
- W4283785453 hasConcept C111919701 @default.
- W4283785453 hasConcept C133462117 @default.
- W4283785453 hasConcept C153294291 @default.