Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283799568> ?p ?o ?g. }
- W4283799568 endingPage "157096" @default.
- W4283799568 startingPage "157096" @default.
- W4283799568 abstract "The sanitary security of drinking water is closely related to human health, but its quality assessment mainly focused on limited types of indicators and relatively restricted time span. The current study was aimed to evaluate the long-term spatial-temporal distribution of municipal drinking water quality and explore the origin of water contamination based on multiple water indicators of 137 finished water samples and 863 tap water samples from Wuhan city, China. Water quality indexes (WQIs) were calculated to integrate the measured indicators. WQIs of the finished water samples ranged from 0.24 to 0.92, with the qualification rate and excellent rate of 100 % and 96.4 %, respectively, while those of the tap water samples ranged from 0.09 to 3.20, with the qualification rate of 99.9 %, and excellent rate of 95.5 %. Artificial neural network model was constructed based on the time series of WQIs from 2013 to 2019 to predict the water quality thereafter. The predicted WQIs of finished and tap water in 2020 and 2021 qualified on the whole, with the excellent rate of 87.5 % and 92.9 %, respectively. Except for three samples exceeding the limits of free chlorine residual, chloroform and fluoride, respectively, the majority of indicators reached the threshold values for drinking. Our study suggested that municipal drinking water quality in Wuhan was generally stable and in line with the national hygiene standards. Moreover, principal component analysis illustrated that the main potential sources of drinking water contamination were inorganic salts and organic matters, followed by pollution from distribution systems, the use of aluminum-containing coagulants and turbidity involved in water treatment, which need more attention." @default.
- W4283799568 created "2022-07-05" @default.
- W4283799568 creator A5000970532 @default.
- W4283799568 creator A5003264381 @default.
- W4283799568 creator A5004907878 @default.
- W4283799568 creator A5005005012 @default.
- W4283799568 creator A5006143236 @default.
- W4283799568 creator A5027240571 @default.
- W4283799568 creator A5049882309 @default.
- W4283799568 creator A5063481044 @default.
- W4283799568 creator A5070756840 @default.
- W4283799568 date "2022-10-01" @default.
- W4283799568 modified "2023-10-11" @default.
- W4283799568 title "Quality assessment and prediction of municipal drinking water using water quality index and artificial neural network: A case study of Wuhan, central China, from 2013 to 2019" @default.
- W4283799568 cites W1997320786 @default.
- W4283799568 cites W2003666573 @default.
- W4283799568 cites W2023067367 @default.
- W4283799568 cites W2057243850 @default.
- W4283799568 cites W2069997530 @default.
- W4283799568 cites W2090555812 @default.
- W4283799568 cites W2110150043 @default.
- W4283799568 cites W2163922914 @default.
- W4283799568 cites W2339166732 @default.
- W4283799568 cites W2404213878 @default.
- W4283799568 cites W2474023817 @default.
- W4283799568 cites W2509175729 @default.
- W4283799568 cites W2568722290 @default.
- W4283799568 cites W2655600275 @default.
- W4283799568 cites W2754228220 @default.
- W4283799568 cites W2767175619 @default.
- W4283799568 cites W2767273512 @default.
- W4283799568 cites W2778408311 @default.
- W4283799568 cites W2783813071 @default.
- W4283799568 cites W2790626005 @default.
- W4283799568 cites W2801969138 @default.
- W4283799568 cites W2803249313 @default.
- W4283799568 cites W2806881585 @default.
- W4283799568 cites W2893958886 @default.
- W4283799568 cites W2921262589 @default.
- W4283799568 cites W2937508639 @default.
- W4283799568 cites W2946525628 @default.
- W4283799568 cites W2963646306 @default.
- W4283799568 cites W2965779282 @default.
- W4283799568 cites W2971689204 @default.
- W4283799568 cites W2975300641 @default.
- W4283799568 cites W2982396613 @default.
- W4283799568 cites W2983407246 @default.
- W4283799568 cites W2993784123 @default.
- W4283799568 cites W2996752459 @default.
- W4283799568 cites W2999945179 @default.
- W4283799568 cites W3011932449 @default.
- W4283799568 cites W3018066304 @default.
- W4283799568 cites W3034193289 @default.
- W4283799568 cites W3038576491 @default.
- W4283799568 cites W3042328838 @default.
- W4283799568 cites W3043959394 @default.
- W4283799568 cites W3081858974 @default.
- W4283799568 cites W3087341357 @default.
- W4283799568 cites W3099350480 @default.
- W4283799568 cites W3100818123 @default.
- W4283799568 cites W3107084667 @default.
- W4283799568 cites W3121158412 @default.
- W4283799568 cites W3127670633 @default.
- W4283799568 cites W3156322283 @default.
- W4283799568 cites W3161070630 @default.
- W4283799568 cites W3166190941 @default.
- W4283799568 cites W3168740912 @default.
- W4283799568 cites W3171950971 @default.
- W4283799568 cites W3211647702 @default.
- W4283799568 cites W4210274350 @default.
- W4283799568 doi "https://doi.org/10.1016/j.scitotenv.2022.157096" @default.
- W4283799568 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35779730" @default.
- W4283799568 hasPublicationYear "2022" @default.
- W4283799568 type Work @default.
- W4283799568 citedByCount "4" @default.
- W4283799568 countsByYear W42837995682023 @default.
- W4283799568 crossrefType "journal-article" @default.
- W4283799568 hasAuthorship W4283799568A5000970532 @default.
- W4283799568 hasAuthorship W4283799568A5003264381 @default.
- W4283799568 hasAuthorship W4283799568A5004907878 @default.
- W4283799568 hasAuthorship W4283799568A5005005012 @default.
- W4283799568 hasAuthorship W4283799568A5006143236 @default.
- W4283799568 hasAuthorship W4283799568A5027240571 @default.
- W4283799568 hasAuthorship W4283799568A5049882309 @default.
- W4283799568 hasAuthorship W4283799568A5063481044 @default.
- W4283799568 hasAuthorship W4283799568A5070756840 @default.
- W4283799568 hasConcept C107872376 @default.
- W4283799568 hasConcept C112570922 @default.
- W4283799568 hasConcept C17538187 @default.
- W4283799568 hasConcept C185592680 @default.
- W4283799568 hasConcept C18903297 @default.
- W4283799568 hasConcept C2780797713 @default.
- W4283799568 hasConcept C39432304 @default.
- W4283799568 hasConcept C521259446 @default.
- W4283799568 hasConcept C86803240 @default.
- W4283799568 hasConcept C87717796 @default.
- W4283799568 hasConcept C90195498 @default.
- W4283799568 hasConceptScore W4283799568C107872376 @default.