Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283800225> ?p ?o ?g. }
- W4283800225 abstract "Background Machine learning algorithms for predicting 30-day stroke readmission are rarely discussed. The aims of this study were to identify significant predictors of 30-day readmission after stroke and to compare prediction accuracy and area under the receiver operating characteristic (AUROC) curve in five models: artificial neural network (ANN), K nearest neighbor (KNN), random forest (RF), support vector machine (SVM), naive Bayes classifier (NBC), and Cox regression (COX) models. Methods The subjects of this prospective cohort study were 1,476 patients with a history of admission for stroke to one of six hospitals between March, 2014, and September, 2019. A training dataset ( n = 1,033) was used for model development, and a testing dataset ( n = 443) was used for internal validation. Another 167 patients with stroke recruited from October, to December, 2019, were enrolled in the dataset for external validation. A feature importance analysis was also performed to identify the significance of the selected input variables. Results For predicting 30-day readmission after stroke, the ANN model had significantly ( P < 0.001) higher performance indices compared to the other models. According to the ANN model results, the best predictor of 30-day readmission was PAC followed by nasogastric tube insertion and stroke type ( P < 0.05). Using a machine learning ANN model to obtain an accurate estimate of 30-day readmission for stroke and to identify risk factors may improve the precision and efficacy of management for these patients. Conclusion Using a machine-learning ANN model to obtain an accurate estimate of 30-day readmission for stroke and to identify risk factors may improve the precision and efficacy of management for these patients. For stroke patients who are candidates for PAC rehabilitation, these predictors have practical applications in educating patients in the expected course of recovery and health outcomes." @default.
- W4283800225 created "2022-07-05" @default.
- W4283800225 creator A5000795102 @default.
- W4283800225 creator A5012574302 @default.
- W4283800225 creator A5047150088 @default.
- W4283800225 creator A5055662554 @default.
- W4283800225 creator A5056278493 @default.
- W4283800225 creator A5059630636 @default.
- W4283800225 creator A5069429785 @default.
- W4283800225 creator A5080924677 @default.
- W4283800225 creator A5086569405 @default.
- W4283800225 creator A5091754627 @default.
- W4283800225 date "2022-07-04" @default.
- W4283800225 modified "2023-10-18" @default.
- W4283800225 title "Predicting 30-Day Readmission for Stroke Using Machine Learning Algorithms: A Prospective Cohort Study" @default.
- W4283800225 cites W1685157389 @default.
- W4283800225 cites W1903176141 @default.
- W4283800225 cites W1996020380 @default.
- W4283800225 cites W2008297781 @default.
- W4283800225 cites W2031992183 @default.
- W4283800225 cites W2032215495 @default.
- W4283800225 cites W2040412867 @default.
- W4283800225 cites W2052024166 @default.
- W4283800225 cites W2098957888 @default.
- W4283800225 cites W2102636708 @default.
- W4283800225 cites W2106540507 @default.
- W4283800225 cites W2117655141 @default.
- W4283800225 cites W2123393844 @default.
- W4283800225 cites W2123715374 @default.
- W4283800225 cites W2149644139 @default.
- W4283800225 cites W2153836018 @default.
- W4283800225 cites W2342802630 @default.
- W4283800225 cites W2556522401 @default.
- W4283800225 cites W2614856259 @default.
- W4283800225 cites W2742559143 @default.
- W4283800225 cites W2743834179 @default.
- W4283800225 cites W2761006532 @default.
- W4283800225 cites W2773598832 @default.
- W4283800225 cites W2793556244 @default.
- W4283800225 cites W2810023043 @default.
- W4283800225 cites W2906137209 @default.
- W4283800225 cites W2945889162 @default.
- W4283800225 cites W2958072245 @default.
- W4283800225 cites W2967872473 @default.
- W4283800225 cites W2981311951 @default.
- W4283800225 cites W2999677189 @default.
- W4283800225 cites W3005222164 @default.
- W4283800225 cites W3013354695 @default.
- W4283800225 cites W3016091224 @default.
- W4283800225 cites W3031228841 @default.
- W4283800225 cites W3034812042 @default.
- W4283800225 cites W3041010291 @default.
- W4283800225 cites W3093315068 @default.
- W4283800225 cites W3142604018 @default.
- W4283800225 cites W3144601772 @default.
- W4283800225 cites W3162374536 @default.
- W4283800225 cites W3178880675 @default.
- W4283800225 cites W3188969319 @default.
- W4283800225 cites W3195726452 @default.
- W4283800225 cites W3197552172 @default.
- W4283800225 cites W4200044765 @default.
- W4283800225 doi "https://doi.org/10.3389/fneur.2022.875491" @default.
- W4283800225 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35860493" @default.
- W4283800225 hasPublicationYear "2022" @default.
- W4283800225 type Work @default.
- W4283800225 citedByCount "2" @default.
- W4283800225 countsByYear W42838002252022 @default.
- W4283800225 crossrefType "journal-article" @default.
- W4283800225 hasAuthorship W4283800225A5000795102 @default.
- W4283800225 hasAuthorship W4283800225A5012574302 @default.
- W4283800225 hasAuthorship W4283800225A5047150088 @default.
- W4283800225 hasAuthorship W4283800225A5055662554 @default.
- W4283800225 hasAuthorship W4283800225A5056278493 @default.
- W4283800225 hasAuthorship W4283800225A5059630636 @default.
- W4283800225 hasAuthorship W4283800225A5069429785 @default.
- W4283800225 hasAuthorship W4283800225A5080924677 @default.
- W4283800225 hasAuthorship W4283800225A5086569405 @default.
- W4283800225 hasAuthorship W4283800225A5091754627 @default.
- W4283800225 hasBestOaLocation W42838002251 @default.
- W4283800225 hasConcept C119857082 @default.
- W4283800225 hasConcept C12267149 @default.
- W4283800225 hasConcept C126322002 @default.
- W4283800225 hasConcept C127413603 @default.
- W4283800225 hasConcept C154945302 @default.
- W4283800225 hasConcept C169258074 @default.
- W4283800225 hasConcept C188816634 @default.
- W4283800225 hasConcept C2780645631 @default.
- W4283800225 hasConcept C41008148 @default.
- W4283800225 hasConcept C50382708 @default.
- W4283800225 hasConcept C50644808 @default.
- W4283800225 hasConcept C52001869 @default.
- W4283800225 hasConcept C58471807 @default.
- W4283800225 hasConcept C71924100 @default.
- W4283800225 hasConcept C72563966 @default.
- W4283800225 hasConcept C78519656 @default.
- W4283800225 hasConceptScore W4283800225C119857082 @default.
- W4283800225 hasConceptScore W4283800225C12267149 @default.
- W4283800225 hasConceptScore W4283800225C126322002 @default.
- W4283800225 hasConceptScore W4283800225C127413603 @default.
- W4283800225 hasConceptScore W4283800225C154945302 @default.