Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283800304> ?p ?o ?g. }
- W4283800304 endingPage "102805" @default.
- W4283800304 startingPage "102805" @default.
- W4283800304 abstract "The study aims to optimize cellulase (CMCase) production by Aspergillus flavus using wheat straw, an abundantly available lignocellulosic waste, as a substrate. Three parameters, i.e., nitrogen content (0.25 to 1%), fungal inoculum (0.25 to 1%), and duration (3 to 12 days), were optimized for maximum CMCase production using Response surface methodology-Box Behnken design (RSM-BBD). The quadratic response surface was suitable, and the model was significant. However, higher-order machine learning (ML) models were applied as the RSM-BBD model had a low R2 value (0.85) and negative predicted R2 value (−0.82). The supervised ML regression models, i.e., Artificial neural network (ANN) with Bayesian Regularization Neural Network (BRNN) and Radial Basis function Neural Network (RBFNN), Support vector machine (SVM) with Polynomial kernel (SPK), and Gaussian kernel (SGK), and Gaussian process learner (GPL) with the exponential kernel (GEK) and squared exponential kernel (GSEK) were applied. The RBFNN was the best performing model with a mean squared error (MSE) value of 0.0025 and an R2 value of 0.98. The maximum CMCase production of 13.89 U/gds was at yeast extract 0.25%, fungal inoculum 0.625%, and duration of 12 days. There was almost a threefold increase in CMCase production after optimization compared to the screening experiments (4.7 U/gds)." @default.
- W4283800304 created "2022-07-05" @default.
- W4283800304 creator A5017934843 @default.
- W4283800304 creator A5022120163 @default.
- W4283800304 creator A5035434752 @default.
- W4283800304 creator A5051190805 @default.
- W4283800304 creator A5054729070 @default.
- W4283800304 creator A5056195987 @default.
- W4283800304 creator A5068544237 @default.
- W4283800304 creator A5077298984 @default.
- W4283800304 date "2022-08-01" @default.
- W4283800304 modified "2023-10-05" @default.
- W4283800304 title "Optimizing cellulase production from Aspergillus flavus using response surface methodology and machine learning models" @default.
- W4283800304 cites W1135787362 @default.
- W4283800304 cites W1661501658 @default.
- W4283800304 cites W1965409125 @default.
- W4283800304 cites W1985711226 @default.
- W4283800304 cites W1992958242 @default.
- W4283800304 cites W2001278158 @default.
- W4283800304 cites W2003810144 @default.
- W4283800304 cites W2004445488 @default.
- W4283800304 cites W2020334405 @default.
- W4283800304 cites W2025221530 @default.
- W4283800304 cites W2028070629 @default.
- W4283800304 cites W2037349602 @default.
- W4283800304 cites W2042740449 @default.
- W4283800304 cites W2045001586 @default.
- W4283800304 cites W2049421142 @default.
- W4283800304 cites W2050319016 @default.
- W4283800304 cites W2051453543 @default.
- W4283800304 cites W2054118996 @default.
- W4283800304 cites W2062966894 @default.
- W4283800304 cites W2065325475 @default.
- W4283800304 cites W2067177470 @default.
- W4283800304 cites W2072711106 @default.
- W4283800304 cites W2074121977 @default.
- W4283800304 cites W2086238939 @default.
- W4283800304 cites W2102814386 @default.
- W4283800304 cites W2103496339 @default.
- W4283800304 cites W2108507302 @default.
- W4283800304 cites W2117871237 @default.
- W4283800304 cites W2120949690 @default.
- W4283800304 cites W2123368500 @default.
- W4283800304 cites W2137983211 @default.
- W4283800304 cites W2140196823 @default.
- W4283800304 cites W2142827986 @default.
- W4283800304 cites W2143250705 @default.
- W4283800304 cites W2156692081 @default.
- W4283800304 cites W2262896633 @default.
- W4283800304 cites W2273861901 @default.
- W4283800304 cites W2288875731 @default.
- W4283800304 cites W2291748823 @default.
- W4283800304 cites W2607344287 @default.
- W4283800304 cites W2617697564 @default.
- W4283800304 cites W2735192531 @default.
- W4283800304 cites W2756432010 @default.
- W4283800304 cites W2770194923 @default.
- W4283800304 cites W2788633781 @default.
- W4283800304 cites W2792362452 @default.
- W4283800304 cites W2794284562 @default.
- W4283800304 cites W2804446681 @default.
- W4283800304 cites W2805310212 @default.
- W4283800304 cites W2807354153 @default.
- W4283800304 cites W2810674285 @default.
- W4283800304 cites W2883548334 @default.
- W4283800304 cites W2901469855 @default.
- W4283800304 cites W2904613798 @default.
- W4283800304 cites W2935877504 @default.
- W4283800304 cites W3015399323 @default.
- W4283800304 cites W3023207182 @default.
- W4283800304 cites W3028645112 @default.
- W4283800304 cites W3033080299 @default.
- W4283800304 cites W3044453471 @default.
- W4283800304 cites W3045697856 @default.
- W4283800304 cites W3098326027 @default.
- W4283800304 cites W3099305384 @default.
- W4283800304 cites W3102549167 @default.
- W4283800304 cites W3128152162 @default.
- W4283800304 cites W3130413110 @default.
- W4283800304 cites W3134743237 @default.
- W4283800304 cites W3137257927 @default.
- W4283800304 cites W3159070358 @default.
- W4283800304 cites W3182175798 @default.
- W4283800304 cites W3196154537 @default.
- W4283800304 cites W3201952394 @default.
- W4283800304 cites W4205663410 @default.
- W4283800304 cites W4210288963 @default.
- W4283800304 cites W921098652 @default.
- W4283800304 doi "https://doi.org/10.1016/j.eti.2022.102805" @default.
- W4283800304 hasPublicationYear "2022" @default.
- W4283800304 type Work @default.
- W4283800304 citedByCount "12" @default.
- W4283800304 countsByYear W42838003042022 @default.
- W4283800304 countsByYear W42838003042023 @default.
- W4283800304 crossrefType "journal-article" @default.
- W4283800304 hasAuthorship W4283800304A5017934843 @default.
- W4283800304 hasAuthorship W4283800304A5022120163 @default.
- W4283800304 hasAuthorship W4283800304A5035434752 @default.