Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283800658> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4283800658 endingPage "12199" @default.
- W4283800658 startingPage "12191" @default.
- W4283800658 abstract "Infectious disease forecasting has been a key focus in the recent past owing to the COVID-19 pandemic and has proved to be an important tool in controlling the pandemic. With the advent of reliable spatiotemporal data, graph neural network models have been able to successfully model the inter-relation between the cross-region signals to produce quality forecasts, but like most deep-learning models they do not explicitly incorporate the underlying causal mechanisms. In this work, we employ a causal mechanistic model to guide the learning of the graph embeddings and propose a novel learning framework -- Causal-based Graph Neural Network (CausalGNN) that learns spatiotemporal embedding in a latent space where graph input features and epidemiological context are combined via a mutually learning mechanism using graph-based non-linear transformations. We design an attention-based dynamic GNN module to capture spatial and temporal disease dynamics. A causal module is added to the framework to provide epidemiological context for node embedding via ordinary differential equations. Extensive experiments on forecasting daily new cases of COVID-19 at global, US state, and US county levels show that the proposed method outperforms a broad range of baselines. The learned model which incorporates epidemiological context organizes the embedding in an efficient way by keeping the parameter size small leading to robust and accurate forecasting performance across various datasets." @default.
- W4283800658 created "2022-07-05" @default.
- W4283800658 creator A5008421418 @default.
- W4283800658 creator A5020293284 @default.
- W4283800658 creator A5031381738 @default.
- W4283800658 creator A5065844089 @default.
- W4283800658 creator A5081476701 @default.
- W4283800658 creator A5081507485 @default.
- W4283800658 date "2022-06-28" @default.
- W4283800658 modified "2023-10-05" @default.
- W4283800658 title "CausalGNN: Causal-Based Graph Neural Networks for Spatio-Temporal Epidemic Forecasting" @default.
- W4283800658 doi "https://doi.org/10.1609/aaai.v36i11.21479" @default.
- W4283800658 hasPublicationYear "2022" @default.
- W4283800658 type Work @default.
- W4283800658 citedByCount "8" @default.
- W4283800658 countsByYear W42838006582022 @default.
- W4283800658 countsByYear W42838006582023 @default.
- W4283800658 crossrefType "journal-article" @default.
- W4283800658 hasAuthorship W4283800658A5008421418 @default.
- W4283800658 hasAuthorship W4283800658A5020293284 @default.
- W4283800658 hasAuthorship W4283800658A5031381738 @default.
- W4283800658 hasAuthorship W4283800658A5065844089 @default.
- W4283800658 hasAuthorship W4283800658A5081476701 @default.
- W4283800658 hasAuthorship W4283800658A5081507485 @default.
- W4283800658 hasBestOaLocation W42838006581 @default.
- W4283800658 hasConcept C119857082 @default.
- W4283800658 hasConcept C132525143 @default.
- W4283800658 hasConcept C151730666 @default.
- W4283800658 hasConcept C154945302 @default.
- W4283800658 hasConcept C2779343474 @default.
- W4283800658 hasConcept C41008148 @default.
- W4283800658 hasConcept C41608201 @default.
- W4283800658 hasConcept C50644808 @default.
- W4283800658 hasConcept C80444323 @default.
- W4283800658 hasConcept C86803240 @default.
- W4283800658 hasConceptScore W4283800658C119857082 @default.
- W4283800658 hasConceptScore W4283800658C132525143 @default.
- W4283800658 hasConceptScore W4283800658C151730666 @default.
- W4283800658 hasConceptScore W4283800658C154945302 @default.
- W4283800658 hasConceptScore W4283800658C2779343474 @default.
- W4283800658 hasConceptScore W4283800658C41008148 @default.
- W4283800658 hasConceptScore W4283800658C41608201 @default.
- W4283800658 hasConceptScore W4283800658C50644808 @default.
- W4283800658 hasConceptScore W4283800658C80444323 @default.
- W4283800658 hasConceptScore W4283800658C86803240 @default.
- W4283800658 hasIssue "11" @default.
- W4283800658 hasLocation W42838006581 @default.
- W4283800658 hasOpenAccess W4283800658 @default.
- W4283800658 hasPrimaryLocation W42838006581 @default.
- W4283800658 hasRelatedWork W2893186803 @default.
- W4283800658 hasRelatedWork W2923818335 @default.
- W4283800658 hasRelatedWork W3035116611 @default.
- W4283800658 hasRelatedWork W3044354590 @default.
- W4283800658 hasRelatedWork W3094605108 @default.
- W4283800658 hasRelatedWork W4212923699 @default.
- W4283800658 hasRelatedWork W4226361842 @default.
- W4283800658 hasRelatedWork W4287763734 @default.
- W4283800658 hasRelatedWork W4310879833 @default.
- W4283800658 hasRelatedWork W4385279070 @default.
- W4283800658 hasVolume "36" @default.
- W4283800658 isParatext "false" @default.
- W4283800658 isRetracted "false" @default.
- W4283800658 workType "article" @default.