Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283802783> ?p ?o ?g. }
- W4283802783 endingPage "381" @default.
- W4283802783 startingPage "381" @default.
- W4283802783 abstract "In this paper, based on the L2-1σ scheme and nonconforming EQ1rot finite element method (FEM), a numerical approximation is presented for a class of two-dimensional time-fractional diffusion equations involving variable coefficients. A novel and detailed analysis of the equations with an initial singularity is described on anisotropic meshes. The fully discrete scheme is shown to be unconditionally stable, and optimal second-order accuracy for convergence and superconvergence can be achieved in both time and space directions. Finally, the obtained numerical results are compared with the theoretical analysis, which verifies the accuracy of the proposed method." @default.
- W4283802783 created "2022-07-05" @default.
- W4283802783 creator A5003761715 @default.
- W4283802783 creator A5005536232 @default.
- W4283802783 creator A5062702094 @default.
- W4283802783 creator A5081538659 @default.
- W4283802783 creator A5088406552 @default.
- W4283802783 date "2022-07-04" @default.
- W4283802783 modified "2023-10-18" @default.
- W4283802783 title "Optimal H1-Norm Estimation of Nonconforming FEM for Time-Fractional Diffusion Equation on Anisotropic Meshes" @default.
- W4283802783 cites W1504271241 @default.
- W4283802783 cites W1971075293 @default.
- W4283802783 cites W1998399256 @default.
- W4283802783 cites W2015260916 @default.
- W4283802783 cites W2022691550 @default.
- W4283802783 cites W2023958999 @default.
- W4283802783 cites W2024842502 @default.
- W4283802783 cites W2043080303 @default.
- W4283802783 cites W2065232540 @default.
- W4283802783 cites W2070505112 @default.
- W4283802783 cites W2080296395 @default.
- W4283802783 cites W2129161483 @default.
- W4283802783 cites W2165076033 @default.
- W4283802783 cites W2214443391 @default.
- W4283802783 cites W2256040747 @default.
- W4283802783 cites W2397817385 @default.
- W4283802783 cites W2510459129 @default.
- W4283802783 cites W2608656286 @default.
- W4283802783 cites W2799821673 @default.
- W4283802783 cites W2898636786 @default.
- W4283802783 cites W2912159917 @default.
- W4283802783 cites W2964083141 @default.
- W4283802783 cites W2998692622 @default.
- W4283802783 cites W3000311770 @default.
- W4283802783 cites W3037899642 @default.
- W4283802783 cites W3045850607 @default.
- W4283802783 cites W3096050333 @default.
- W4283802783 cites W3100197187 @default.
- W4283802783 cites W3109500412 @default.
- W4283802783 cites W3115547175 @default.
- W4283802783 cites W3143920138 @default.
- W4283802783 cites W3146488794 @default.
- W4283802783 cites W3164559554 @default.
- W4283802783 doi "https://doi.org/10.3390/fractalfract6070381" @default.
- W4283802783 hasPublicationYear "2022" @default.
- W4283802783 type Work @default.
- W4283802783 citedByCount "0" @default.
- W4283802783 crossrefType "journal-article" @default.
- W4283802783 hasAuthorship W4283802783A5003761715 @default.
- W4283802783 hasAuthorship W4283802783A5005536232 @default.
- W4283802783 hasAuthorship W4283802783A5062702094 @default.
- W4283802783 hasAuthorship W4283802783A5081538659 @default.
- W4283802783 hasAuthorship W4283802783A5088406552 @default.
- W4283802783 hasBestOaLocation W42838027831 @default.
- W4283802783 hasConcept C121332964 @default.
- W4283802783 hasConcept C134306372 @default.
- W4283802783 hasConcept C135628077 @default.
- W4283802783 hasConcept C136264566 @default.
- W4283802783 hasConcept C16171025 @default.
- W4283802783 hasConcept C162324750 @default.
- W4283802783 hasConcept C17744445 @default.
- W4283802783 hasConcept C191795146 @default.
- W4283802783 hasConcept C199539241 @default.
- W4283802783 hasConcept C2524010 @default.
- W4283802783 hasConcept C2777303404 @default.
- W4283802783 hasConcept C2780378061 @default.
- W4283802783 hasConcept C28826006 @default.
- W4283802783 hasConcept C31487907 @default.
- W4283802783 hasConcept C33923547 @default.
- W4283802783 hasConcept C50522688 @default.
- W4283802783 hasConcept C571446 @default.
- W4283802783 hasConcept C62520636 @default.
- W4283802783 hasConcept C83295009 @default.
- W4283802783 hasConcept C85725439 @default.
- W4283802783 hasConcept C97355855 @default.
- W4283802783 hasConceptScore W4283802783C121332964 @default.
- W4283802783 hasConceptScore W4283802783C134306372 @default.
- W4283802783 hasConceptScore W4283802783C135628077 @default.
- W4283802783 hasConceptScore W4283802783C136264566 @default.
- W4283802783 hasConceptScore W4283802783C16171025 @default.
- W4283802783 hasConceptScore W4283802783C162324750 @default.
- W4283802783 hasConceptScore W4283802783C17744445 @default.
- W4283802783 hasConceptScore W4283802783C191795146 @default.
- W4283802783 hasConceptScore W4283802783C199539241 @default.
- W4283802783 hasConceptScore W4283802783C2524010 @default.
- W4283802783 hasConceptScore W4283802783C2777303404 @default.
- W4283802783 hasConceptScore W4283802783C2780378061 @default.
- W4283802783 hasConceptScore W4283802783C28826006 @default.
- W4283802783 hasConceptScore W4283802783C31487907 @default.
- W4283802783 hasConceptScore W4283802783C33923547 @default.
- W4283802783 hasConceptScore W4283802783C50522688 @default.
- W4283802783 hasConceptScore W4283802783C571446 @default.
- W4283802783 hasConceptScore W4283802783C62520636 @default.
- W4283802783 hasConceptScore W4283802783C83295009 @default.
- W4283802783 hasConceptScore W4283802783C85725439 @default.
- W4283802783 hasConceptScore W4283802783C97355855 @default.
- W4283802783 hasFunder F4320321001 @default.
- W4283802783 hasIssue "7" @default.