Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283803568> ?p ?o ?g. }
- W4283803568 abstract "We formulate and solve a generalized inverse Navier-Stokes problem for the joint velocity field reconstruction and boundary segmentation of noisy flow velocity images. To regularize the problem we use a Bayesian framework with Gaussian random fields. This allows us to estimate the uncertainties of the unknowns by approximating their posterior covariance with a quasi-Newton method. We first test the method for synthetic noisy images of 2D flows and observe that the method successfully reconstructs and segments the noisy synthetic images with a signal-to-noise ratio (SNR) of 3. Then we conduct a magnetic resonance velocimetry (MRV) experiment to acquire images of an axisymmetric flow for low ($simeq 6$) and high ($>30$) SNRs. We show that the method is capable of reconstructing and segmenting the low SNR images, producing noiseless velocity fields and a smooth segmentation, with negligible errors compared with the high SNR images. This amounts to a reduction of the total scanning time by a factor of 27. At the same time, the method provides additional knowledge about the physics of the flow (e.g. pressure), and addresses the shortcomings of MRV (low spatial resolution and partial volume effects) that otherwise hinder the accurate estimation of wall shear stresses. Although the implementation of the method is restricted to 2D steady planar and axisymmetric flows, the formulation applies immediately to 3D steady flows and naturally extends to 3D periodic and unsteady flows." @default.
- W4283803568 created "2022-07-05" @default.
- W4283803568 creator A5008733654 @default.
- W4283803568 creator A5024923686 @default.
- W4283803568 creator A5064576896 @default.
- W4283803568 creator A5085590730 @default.
- W4283803568 date "2022-07-04" @default.
- W4283803568 modified "2023-09-27" @default.
- W4283803568 title "Joint reconstruction and segmentation of noisy velocity images as an inverse Navier–Stokes problem" @default.
- W4283803568 cites W1512208174 @default.
- W4283803568 cites W1918988090 @default.
- W4283803568 cites W1967149819 @default.
- W4283803568 cites W1974670830 @default.
- W4283803568 cites W1981511599 @default.
- W4283803568 cites W1982502704 @default.
- W4283803568 cites W1991113069 @default.
- W4283803568 cites W1999244633 @default.
- W4283803568 cites W1999892194 @default.
- W4283803568 cites W2002428563 @default.
- W4283803568 cites W2015011451 @default.
- W4283803568 cites W2015418516 @default.
- W4283803568 cites W2020152794 @default.
- W4283803568 cites W2026500470 @default.
- W4283803568 cites W2033398663 @default.
- W4283803568 cites W2041494914 @default.
- W4283803568 cites W2050763737 @default.
- W4283803568 cites W2053780716 @default.
- W4283803568 cites W2054034220 @default.
- W4283803568 cites W2059784307 @default.
- W4283803568 cites W2066012686 @default.
- W4283803568 cites W2068540944 @default.
- W4283803568 cites W2069444004 @default.
- W4283803568 cites W2079423956 @default.
- W4283803568 cites W2084761689 @default.
- W4283803568 cites W2095101315 @default.
- W4283803568 cites W2099068061 @default.
- W4283803568 cites W2101675075 @default.
- W4283803568 cites W2109513431 @default.
- W4283803568 cites W2115668755 @default.
- W4283803568 cites W2116040950 @default.
- W4283803568 cites W2122192562 @default.
- W4283803568 cites W2133059825 @default.
- W4283803568 cites W2141870784 @default.
- W4283803568 cites W2149498546 @default.
- W4283803568 cites W2172897761 @default.
- W4283803568 cites W2235611166 @default.
- W4283803568 cites W2245493112 @default.
- W4283803568 cites W2344003093 @default.
- W4283803568 cites W2407486805 @default.
- W4283803568 cites W2502655619 @default.
- W4283803568 cites W2583875019 @default.
- W4283803568 cites W2592730796 @default.
- W4283803568 cites W2624985854 @default.
- W4283803568 cites W2765816034 @default.
- W4283803568 cites W2795774455 @default.
- W4283803568 cites W2803589422 @default.
- W4283803568 cites W2890757457 @default.
- W4283803568 cites W2891481775 @default.
- W4283803568 cites W2919332758 @default.
- W4283803568 cites W2963399478 @default.
- W4283803568 cites W2969007124 @default.
- W4283803568 cites W2969474692 @default.
- W4283803568 cites W2979322548 @default.
- W4283803568 cites W2979906738 @default.
- W4283803568 cites W3008392875 @default.
- W4283803568 cites W3046528457 @default.
- W4283803568 cites W3099878876 @default.
- W4283803568 cites W3102535141 @default.
- W4283803568 cites W3103145119 @default.
- W4283803568 cites W3204708751 @default.
- W4283803568 cites W4206333827 @default.
- W4283803568 cites W4236938392 @default.
- W4283803568 cites W4250955649 @default.
- W4283803568 doi "https://doi.org/10.1017/jfm.2022.503" @default.
- W4283803568 hasPublicationYear "2022" @default.
- W4283803568 type Work @default.
- W4283803568 citedByCount "4" @default.
- W4283803568 countsByYear W42838035682022 @default.
- W4283803568 countsByYear W42838035682023 @default.
- W4283803568 crossrefType "journal-article" @default.
- W4283803568 hasAuthorship W4283803568A5008733654 @default.
- W4283803568 hasAuthorship W4283803568A5024923686 @default.
- W4283803568 hasAuthorship W4283803568A5064576896 @default.
- W4283803568 hasAuthorship W4283803568A5085590730 @default.
- W4283803568 hasBestOaLocation W42838035681 @default.
- W4283803568 hasConcept C11413529 @default.
- W4283803568 hasConcept C121332964 @default.
- W4283803568 hasConcept C134306372 @default.
- W4283803568 hasConcept C135252773 @default.
- W4283803568 hasConcept C154945302 @default.
- W4283803568 hasConcept C19191322 @default.
- W4283803568 hasConcept C33026886 @default.
- W4283803568 hasConcept C33923547 @default.
- W4283803568 hasConcept C38349280 @default.
- W4283803568 hasConcept C41008148 @default.
- W4283803568 hasConcept C57879066 @default.
- W4283803568 hasConcept C89600930 @default.
- W4283803568 hasConcept C91188154 @default.
- W4283803568 hasConceptScore W4283803568C11413529 @default.
- W4283803568 hasConceptScore W4283803568C121332964 @default.