Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283810588> ?p ?o ?g. }
- W4283810588 abstract "<sec> <title>BACKGROUND</title> Nurse stories about their experiences during the COVID-19 pandemic offer significant opportunities for healthcare organizations to understand how their primary caregivers are affected by external pressures and internal managerial decisions. </sec> <sec> <title>OBJECTIVE</title> The objective of this study is to examine the evolution of nurses’ work concerns during the COVID-19 pandemic using conversations posted by nursing professionals in social media. </sec> <sec> <title>METHODS</title> We analyzed 14,060 posts related to the COVID-19 pandemic from March 2020 to April 2021. The data analysis stage included unsupervised machine learning and thematic qualitative analysis. We used an unsupervised machine learning approach, Latent Dirichlet Allocation (LDA) to identify salient topics in the collected posts. A human-in-the-loop (HITL) analysis complemented the machine learning approach, categorizing topics into themes and sub-themes. We develop insights on nurses’ evolving perspective based on temporal changes. </sec> <sec> <title>RESULTS</title> We identified themes for bi-weekly periods and grouped them into 20 major themes based on the work concerns inventory framework. Dominant work concerns varied during the specific time period. A detailed analysis of patterns in how themes evolve over time enables us to create narratives of work concerns. </sec> <sec> <title>CONCLUSIONS</title> This study showed that online conversation data and machine learning approaches can enable research into work concerns and workplace stressors during the COVID-19 pandemic. The study shows that monitoring and assessment of online discussions could provide useful data for healthcare organizations responses and planning during crises. </sec>" @default.
- W4283810588 created "2022-07-06" @default.
- W4283810588 creator A5003364352 @default.
- W4283810588 creator A5015529894 @default.
- W4283810588 creator A5043287291 @default.
- W4283810588 creator A5065312383 @default.
- W4283810588 creator A5076087632 @default.
- W4283810588 creator A5077015810 @default.
- W4283810588 date "2022-06-30" @default.
- W4283810588 modified "2023-09-26" @default.
- W4283810588 title "Nurses’ Work Concerns and Disenchantment during the COVID-19 Pandemic: Machine Learning Analysis of Online Discussions (Preprint)" @default.
- W4283810588 cites W1513859721 @default.
- W4283810588 cites W1978000310 @default.
- W4283810588 cites W1983274339 @default.
- W4283810588 cites W2022783018 @default.
- W4283810588 cites W2079836996 @default.
- W4283810588 cites W2083301168 @default.
- W4283810588 cites W2102772752 @default.
- W4283810588 cites W2145520874 @default.
- W4283810588 cites W2164917043 @default.
- W4283810588 cites W2238017232 @default.
- W4283810588 cites W2238545866 @default.
- W4283810588 cites W2488757378 @default.
- W4283810588 cites W2774715948 @default.
- W4283810588 cites W2796030465 @default.
- W4283810588 cites W2901036517 @default.
- W4283810588 cites W2920092544 @default.
- W4283810588 cites W2947033128 @default.
- W4283810588 cites W2962686197 @default.
- W4283810588 cites W2980728287 @default.
- W4283810588 cites W2994965338 @default.
- W4283810588 cites W3014186323 @default.
- W4283810588 cites W3020680470 @default.
- W4283810588 cites W3025393247 @default.
- W4283810588 cites W3035486967 @default.
- W4283810588 cites W3035680161 @default.
- W4283810588 cites W3044282854 @default.
- W4283810588 cites W3046035052 @default.
- W4283810588 cites W3047701807 @default.
- W4283810588 cites W3047961589 @default.
- W4283810588 cites W3048909873 @default.
- W4283810588 cites W3094709634 @default.
- W4283810588 cites W3094772500 @default.
- W4283810588 cites W3096451393 @default.
- W4283810588 cites W3109347153 @default.
- W4283810588 cites W3119732482 @default.
- W4283810588 cites W3127157950 @default.
- W4283810588 cites W3172117055 @default.
- W4283810588 cites W3179238342 @default.
- W4283810588 cites W3204341106 @default.
- W4283810588 cites W4205276384 @default.
- W4283810588 cites W4207023170 @default.
- W4283810588 cites W4210576753 @default.
- W4283810588 cites W4211064414 @default.
- W4283810588 cites W4247385022 @default.
- W4283810588 doi "https://doi.org/10.2196/preprints.40676" @default.
- W4283810588 hasPublicationYear "2022" @default.
- W4283810588 type Work @default.
- W4283810588 citedByCount "0" @default.
- W4283810588 crossrefType "posted-content" @default.
- W4283810588 hasAuthorship W4283810588A5003364352 @default.
- W4283810588 hasAuthorship W4283810588A5015529894 @default.
- W4283810588 hasAuthorship W4283810588A5043287291 @default.
- W4283810588 hasAuthorship W4283810588A5065312383 @default.
- W4283810588 hasAuthorship W4283810588A5076087632 @default.
- W4283810588 hasAuthorship W4283810588A5077015810 @default.
- W4283810588 hasConcept C127413603 @default.
- W4283810588 hasConcept C138885662 @default.
- W4283810588 hasConcept C142724271 @default.
- W4283810588 hasConcept C144024400 @default.
- W4283810588 hasConcept C154945302 @default.
- W4283810588 hasConcept C15744967 @default.
- W4283810588 hasConcept C160735492 @default.
- W4283810588 hasConcept C171686336 @default.
- W4283810588 hasConcept C17744445 @default.
- W4283810588 hasConcept C18762648 @default.
- W4283810588 hasConcept C190248442 @default.
- W4283810588 hasConcept C199033989 @default.
- W4283810588 hasConcept C199539241 @default.
- W4283810588 hasConcept C2522767166 @default.
- W4283810588 hasConcept C2779134260 @default.
- W4283810588 hasConcept C3008058167 @default.
- W4283810588 hasConcept C36289849 @default.
- W4283810588 hasConcept C41008148 @default.
- W4283810588 hasConcept C41895202 @default.
- W4283810588 hasConcept C500882744 @default.
- W4283810588 hasConcept C524204448 @default.
- W4283810588 hasConcept C71924100 @default.
- W4283810588 hasConcept C74196892 @default.
- W4283810588 hasConcept C78519656 @default.
- W4283810588 hasConcept C89623803 @default.
- W4283810588 hasConceptScore W4283810588C127413603 @default.
- W4283810588 hasConceptScore W4283810588C138885662 @default.
- W4283810588 hasConceptScore W4283810588C142724271 @default.
- W4283810588 hasConceptScore W4283810588C144024400 @default.
- W4283810588 hasConceptScore W4283810588C154945302 @default.
- W4283810588 hasConceptScore W4283810588C15744967 @default.
- W4283810588 hasConceptScore W4283810588C160735492 @default.
- W4283810588 hasConceptScore W4283810588C171686336 @default.
- W4283810588 hasConceptScore W4283810588C17744445 @default.