Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283812951> ?p ?o ?g. }
- W4283812951 endingPage "100264" @default.
- W4283812951 startingPage "100264" @default.
- W4283812951 abstract "District heating (DH) network is a key infrastructure to decarbonize the heating sector through the centralized production of heat distributed to final users. The implementation of advanced control techniques is increasingly common in the field of energy optimization since they can provide a more efficient way of minimizing energy demand by appropriate scheduling of the control variables. The aim of this work is to present the application of two control strategies, i.e., Model Predictive Control (MPC) and Reinforcement Learning (RL), to a system based on a DH network supplied by a Combined Heat and Power plant (CHP-DH plant). The analyzed case study is a real CHP-DH plant operating in the small Italian town of Osimo (central Italy). The DH network currently connects more than 1200 users, generating peak heat demand of about 9.7 MWth. The heat generator is composed of a natural gas fueled internal combustion engine coupled with natural gas boilers. The work provides a comparison between the current control strategy (deduced from measured data) and the performance of the CHP-DH plant controlled with an MPC and an RL control. The results showed the effectiveness of the two controls in satisfying the thermal demand of the users, while minimizing the thermal losses towards the ground. Both MPC and RL allow to implement control strategies different from the current control in terms of supply temperature and flow rate circulating in the network. Referring to the winter months, in which the current operation of the system tends to prefer high supply temperatures, the advanced controls made it possible to reduce the thermal heat supply by reducing the thermal losses of about 3.9 % with the MPC and 6.54 % with the RL, corresponding to emission avoidances up to 23.3 tCO2 and 12.6 tCO2, respectively. The paper, as well as showing the application of the controls, contains a critical discussion of all the positive aspects and weaknesses found in the application of the MPC and the RL control to the case study." @default.
- W4283812951 created "2022-07-06" @default.
- W4283812951 creator A5053590326 @default.
- W4283812951 creator A5056152519 @default.
- W4283812951 creator A5058133987 @default.
- W4283812951 creator A5060403965 @default.
- W4283812951 creator A5061127303 @default.
- W4283812951 date "2022-08-01" @default.
- W4283812951 modified "2023-10-14" @default.
- W4283812951 title "Advanced control techniques for CHP-DH systems: A critical comparison of Model Predictive Control and Reinforcement Learning" @default.
- W4283812951 cites W2140461260 @default.
- W4283812951 cites W2525640862 @default.
- W4283812951 cites W2557167654 @default.
- W4283812951 cites W2728577587 @default.
- W4283812951 cites W2792670560 @default.
- W4283812951 cites W2891538854 @default.
- W4283812951 cites W2962868086 @default.
- W4283812951 cites W3007192160 @default.
- W4283812951 cites W3017383712 @default.
- W4283812951 cites W3024350433 @default.
- W4283812951 cites W3047508891 @default.
- W4283812951 cites W3090789943 @default.
- W4283812951 cites W3122220845 @default.
- W4283812951 cites W3130666161 @default.
- W4283812951 cites W3142777474 @default.
- W4283812951 cites W3156694757 @default.
- W4283812951 cites W3163169408 @default.
- W4283812951 cites W3184051077 @default.
- W4283812951 cites W3185454050 @default.
- W4283812951 cites W3196351275 @default.
- W4283812951 cites W3205185918 @default.
- W4283812951 cites W3210432274 @default.
- W4283812951 cites W3216857414 @default.
- W4283812951 cites W4205653889 @default.
- W4283812951 cites W4206980862 @default.
- W4283812951 cites W4211225813 @default.
- W4283812951 doi "https://doi.org/10.1016/j.ecmx.2022.100264" @default.
- W4283812951 hasPublicationYear "2022" @default.
- W4283812951 type Work @default.
- W4283812951 citedByCount "0" @default.
- W4283812951 crossrefType "journal-article" @default.
- W4283812951 hasAuthorship W4283812951A5053590326 @default.
- W4283812951 hasAuthorship W4283812951A5056152519 @default.
- W4283812951 hasAuthorship W4283812951A5058133987 @default.
- W4283812951 hasAuthorship W4283812951A5060403965 @default.
- W4283812951 hasAuthorship W4283812951A5061127303 @default.
- W4283812951 hasBestOaLocation W42838129511 @default.
- W4283812951 hasConcept C121332964 @default.
- W4283812951 hasConcept C127413603 @default.
- W4283812951 hasConcept C154945302 @default.
- W4283812951 hasConcept C163258240 @default.
- W4283812951 hasConcept C171146098 @default.
- W4283812951 hasConcept C172205157 @default.
- W4283812951 hasConcept C18762648 @default.
- W4283812951 hasConcept C206729178 @default.
- W4283812951 hasConcept C21547014 @default.
- W4283812951 hasConcept C21880701 @default.
- W4283812951 hasConcept C2775924081 @default.
- W4283812951 hasConcept C2776756539 @default.
- W4283812951 hasConcept C39432304 @default.
- W4283812951 hasConcept C41008148 @default.
- W4283812951 hasConcept C423512 @default.
- W4283812951 hasConcept C548081761 @default.
- W4283812951 hasConcept C59427239 @default.
- W4283812951 hasConcept C62520636 @default.
- W4283812951 hasConcept C78519656 @default.
- W4283812951 hasConcept C97541855 @default.
- W4283812951 hasConceptScore W4283812951C121332964 @default.
- W4283812951 hasConceptScore W4283812951C127413603 @default.
- W4283812951 hasConceptScore W4283812951C154945302 @default.
- W4283812951 hasConceptScore W4283812951C163258240 @default.
- W4283812951 hasConceptScore W4283812951C171146098 @default.
- W4283812951 hasConceptScore W4283812951C172205157 @default.
- W4283812951 hasConceptScore W4283812951C18762648 @default.
- W4283812951 hasConceptScore W4283812951C206729178 @default.
- W4283812951 hasConceptScore W4283812951C21547014 @default.
- W4283812951 hasConceptScore W4283812951C21880701 @default.
- W4283812951 hasConceptScore W4283812951C2775924081 @default.
- W4283812951 hasConceptScore W4283812951C2776756539 @default.
- W4283812951 hasConceptScore W4283812951C39432304 @default.
- W4283812951 hasConceptScore W4283812951C41008148 @default.
- W4283812951 hasConceptScore W4283812951C423512 @default.
- W4283812951 hasConceptScore W4283812951C548081761 @default.
- W4283812951 hasConceptScore W4283812951C59427239 @default.
- W4283812951 hasConceptScore W4283812951C62520636 @default.
- W4283812951 hasConceptScore W4283812951C78519656 @default.
- W4283812951 hasConceptScore W4283812951C97541855 @default.
- W4283812951 hasFunder F4320320300 @default.
- W4283812951 hasFunder F4320332999 @default.
- W4283812951 hasFunder F4320334322 @default.
- W4283812951 hasLocation W42838129511 @default.
- W4283812951 hasLocation W42838129512 @default.
- W4283812951 hasLocation W42838129513 @default.
- W4283812951 hasOpenAccess W4283812951 @default.
- W4283812951 hasPrimaryLocation W42838129511 @default.
- W4283812951 hasRelatedWork W1967528957 @default.
- W4283812951 hasRelatedWork W1973801623 @default.
- W4283812951 hasRelatedWork W2357215589 @default.